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The response of a single-degree-of-freedom oscillator that can impact a surface with
prescribed harmonic motion is investigated through experimental and numerical means.
The test apparatus consisted of a stainless steel cantilever beam that could collide with a
voice coil shaker which was driven at a specified frequency and amplitude. By collocating
the contact and measurement points at a particular location near the free end of the beam,
the response was dominated by the beam’s fundamental mode. Response time records,
frequency spectra and state space trajeciories that were measured are compared to those
predicted by a non-linear recurrence relation for the oscillator’s state from one impact
to the next. As borne out by non-dimensionalization of the model, the amplitude of
response at a given frequency of excitation is proportional to the amplitude of the surface’s
motion, notwithstanding the non-linearity of the impact process. On the other hand, the
qualitative character of the oscillator’s response depends strongly on the frequency of the
surface’s motion, As the excitation frequency is increased gradually over a range equalling
several times the oscillator’s natural frequency, the response exhibits a recurring pattern
of resonance, period-doubling bifurcation, and irregular non-periodic motion.

1. INTRODUCTION

A variety of mechanical systems can exhibit vibration with intermittent impact,
including gear trains with backlash, mechanisms with excessive joint clearance, and such
reciprocating machinery as punch presses. Collision between two bodies involves relatively
large forces that arc generated over a short time interval, and this results in material
deformation, recovery and the generation of heat and sound. Impact can be described in
the simplest context by the highly empirical coefficient of restitution, which is defined as
the ratio of the contact force’s restoration and deformation impulses. Alternatively, when
compression at the place of contact can be regarded as occurring nearty statically and
reversibly, the contact process can be modelled by Hertz's theory of impact. Frequency
dependent corrections which account for the radiation of energy into the colliding bodies
are available [1]. In each case, however, the contact process is strongly non-linear, being
approximated in the former model by a one-sided displacement constraint and an
instantaneous change in velocity, and in the latter one by a stiffening spring.

In the light of their non-linear character, impact systems can exhibit interesting dynamic
behavior. A prototypical problem in this area is the motion of a concentrated mass that
collides with an oscillating surface. Between collisions, the particle is in free flight under
gravity. For the case in which the amplitude of the surface’s motion is small compared
to the excursion of the particle, Holmes [2] derived a difference equation that maps the
state of the particle from one impact to the next. There, the state of the system was defined
as the time of impact and the velocity of the particle immediately afterwards. In addition
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to harmonic and subharmonic motions, this “bouncing ball” system can exhibit large
families of non-periodic solutions, especially when the excitation frequency is large and the
collisions are nearly elastic. The companion problem in which the surface moves with a
prescribed random motion has also been considered [3].

With applications to the slackening of mooring lines in marine engineering, Thompson
and Ghaffari [4, 5] examined the frequency response of a harmonically forced oscillator
in which the stiffness of the support differed for positive and negative displacements,
Although the oscillator’s motion was piecewise linear in each half of the state space, the
stiffness discontinuity associated with the bilinear spring resulted, under some circum-
stances, in overall complex responses. Impact can be exploited to dissipate vibration energy
[6, 7], and the existence, stability and bifurcation of periodic solutions in such “impact
vibration absorbers™ have been discussed [8, 9}.

In addition to these scemingly simple impact systems, repeated collisions can also be
relevant 1o the response of realistic multi-degree-of-freedom structures. A small amount
of free play in the joints of a pin connected truss, for instance, can lead to strongly
non-linear dynamic behavior. Moon and Li [10] conducted experiments with a truss
comprised of 16 bays, and its motion was judged to be chaotic on the basis of the
broadband response spectrum that resulted from periodic input. Other mechanical
systems which have been shown to exhibit irregular, chaotic behavior are described in
reference [11].

In what follows, a single-degree-of-freedom oscillator that can impact a surface with
prescribed sinusoidal motion is studied experimentally and analytically. Machine design
issues which are relevant to the motivating mechanical systems above are not addressed
here, as the present focus is on developing a basic understanding of driven impact
processes. Laboratory measurements for the frequency response of an impacting cantilever
beam system are discussed first. Excitation of the oscillator occurs exclusively through its
collisions with the surface, and not through a continuously impressed force. In the model,
the response between impacts is readily determined because the oscillator is in free
vibration during those time intervals, and these piecewise solutions then are subject to
juncture conditions which are applied across each impact. In this manner, a non-linear
recurrence relation is derived, providing an efficient means by which the forced response
can be predicted. Despite the apparent simplicity of the impact oscillator, its behavior
under periodic excitation can nevertheless be complicated. Finally, two approximations,
which have been made in the modelling of related impact systems, are re-examined here
in the light of the experimental results.

2. RESPONSE MEASUREMENTS

Experiments were conducted with the test apparatus shown in Figure 1. A stainless steel
strip, 150 mm long, was clamped at one end, and wo rectangular blocks were bolted on
either side of the beam’s free end. A ball bearing was welded to a threaded rod, which in
turn was mounted on the platen of a voice coil shaker. This fixture provided a smooth,
rounded surface against which the beam could impact, and a sensibly “point” contact.
To reduce the acoustic noise that was generated during the experiments and to protect the
surface of the beam, a 0-15 mm thick piece of compliant electrical tape was placed on the
beam at the point of contact. The tape was replaced periodically to ensure uniformity
of the surface. This assembly was not preloaded, so that in the equilibrium state, the beam
and shaker were in near contact. The shaker was driven sinusoidally at the specified
frequency f and amplitude s,,., where its motion was measured with an available
accelerometer. An eddy current probe with a linear range of approximately 1 mm was used
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Figure 1. A schematic of the experimental apparatus. The stainless steel cantilever beam with end mass can
contact the voice coil shaker which is driven with a prescribed harmonic motion. The dimensiens are given in
millimeters.

to measure the displacement x of the beam’s tip without direct physical contact. A standard
active analog differentiation circuit provided the velocity signal v = x. A 750 Hz low-pass
filter reduced the noise generated by the differentiation process, while still preserving
the low-frequency signal content which is of relevance here. Time records and x-v state
space trajectories were recorded on an analog/digital storage oscilloscope, and a multi-
channel spectrum analyzer was available to characterize both the excitation and response
signals.

To the extent that multiple vibration modes could be excited during the beam-shaker
impacts, one issue of concern was whether the higher vibration modes would dominate the
observed motion and mask the non-linear phenomena which are of primary interest. In
that regard, transfer functions for the beam were measured with an instrumented force
hammer to identify the modes that were excited upon impact. The excitation and
measurement points were collocated on opposite sides of the beam, and the displacement
probe was mounted on a threc-axis translation stage so that its position relative to the
beam’s tip could be adjusted. With the contact point at the centroid of the blocks, the first
three vibration modes contributed to the impulse response in the frequency range
(0400 Hz, as shown in Figure 2{a). By locating the contact point 4-5 mm off-center along
the axis of the beam, namely at a point found by cut-and-try to be an approximate node
of the second and third vibration modes at 249 and 275 Hz, respectively, the response was
dominated by the fundamental mode. This off-center point, indicated in Figure 2(b), was
used for all subsequent measurements. The corresponding natural frequency f, = 22-5Hz
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Figure 2. Magnitudes of measured transfer functions. The impact and measurement points were collocated
(a} at the center of the end mass, and (b) at an off-center point which is an approximate node of the second
and third vibration modes. The first peak occurs at 22-5 Hz.

of the oscillator agrees with the estimate of 25 Hz obtained from

1 3ET
Si=5a \/[m + (33/140)m, L7’ M

as given by Bishop and Johnson [12]. In this rough calculation, the system was idealized
as a cantilever Euler-Bernoulli beam of length L, and flexural stiffness EI, with a
concentrated mass m at the free end. For the dimensions specified in Figure 1, the mass
ratio m/m, is approximately 2:1, where m, is the mass of the beam proper, Note that in
the derivation of equation (1), the rotational inertia of m is neglected, and the traasverse
deformation of the beam is approximated in the Rayleigh—Ritz sense by its static deflection
profile, each tending to overestimate f,. A more detailed model could be used, but this was
Jjudged to be unnecessary for the purpose of interpreting the measurement.

The system’s response for a specified excitation frequency was characterized by
measuring time records for the motions of the shaker’s platen (the “surface”) and of the
beam with end mass (the “oscillator™), frequency spectra for the surface and oscillator,
and state space trajectories for the oscillator, The objective of these frequency response
tests was to determine the ranges of excitation frequency where the response was periodic
(although not necessary with the same period as the excitation), and where it was
non-periodic (notwithstanding the system and excitation being deterministic). Measured
results at the excitation frequency of 50 Hz are shown in Figure 3. In Figure 3(a), five cycles
of the surface’s acceleration, and of the osciliator’s displacement, are shown in order to
indicate the degrec of repeatability for the measurements. The oscillator and surface
collided once per cycle of the surface’s motion, and the response waveform was essentially
a rectified sinusoid. The maximum displacement x,,,., namely the “cusp-to-peak” distance
in the oscillator’s time record, was 0-29 mm. Note that a transient, high frequency
component in the surface’s acceleration record occurred immediately after each impact,
This “ringing” derived from the repeated reflection of longitudinal waves along the axis
of the rod against which the oscillator impacted. As indicated by the spectra shown in
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Figure 3, Measured (a) time records, (b) frequency spectra and (c) state space orbits for /=50 Hz (first
excitation range), where the response is peried-one. In (b), each vertical hashmark corresponds to 10 dB.

Figure 3, the periods of the response and excitation are identical, so that this response is
a period-one motion. The oscillator’s measured x-v trajectory is also shown in Figure 3
for approximately 25 clockwise cycles. The near-vertical portion of the orbit corresponds
to the sudden velocity change which is expected at each impact.

When the excitation frequency was increased to 50-25 Hz, a change of only 0-5%,
the qualitative character of the response changed suddenly as depicted in Figure 4. The
oscillator continued to contact the surface once per cycle of excitation, but now twice
per cycle of response; this is termed a period-two motion. In the oscillator’s time record,
the amplitudes of the two half-sine waves are 0-21 mm and 0-32 mm. Notably, these values
bracket the amplitude in Figure 3 immediately preceding the point of bifurcation. The
subharmonic character of the oscillator’s behavior is further borne out by the fundamental
frequency component in its respense spectrum, which occurs at exactly half the excitation
frequency. The state space diagram of Figure 4, which again shows approximately 25
complete cycles of vibration, demonstrates that the two impacts during each response cycle
occurred at approximately the same value of the oscillator’s (or equivalently, the surface’s)
displacement. The velocity changes associated with the two impacts, however, differed in
magnitude by approximately 25%.

As the excitation frequency was increased, the oscillator responded in an apparently
random manner within the frequency window of 54-59 Hz. This pattern of periodicity,
bifurcation and irregular vibration repeated itself for larger values of . Measurements
taken at 101 Hz, within the second such window of irregular motion, are shown in Figure 5.
The ensemble of time records for the oscillator spans approximately 40 cycles of excitation,
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Figure 4. Measured (a) time records, (b) frequency spectra and (c) state space orbits for /= 50-25 Hz {first
excitation range), where immediately following bifurcation the response is pertod-two. Same scales as Figure 3.

and no apparent periodicity is indicated. The sharp spectral peaks which are evident in
the response spectra given in Figures 3 and 4 have been smeared here into a broadband,
as is characteristic of chaotic dynamic systems. Although there is a harmonic component
to the oscillator’s motion at 101 Hz, most of the response energy is localized within the
060 Hz band. The state space trajectory in Figure 5 is shown for approximately 50 orbits.
Successive impacts between the oscillator and the surface typically occurred at different
(positive) displacement values, and the velocity jumps did not have uniform magnitudes.
The response of the oscillator remained irregular and apparently non-periodic for the
duration of the test.

The compilation of these measurements, and others that were made at excitation
frequencies between approximately one and five times f,, is given in Figure 6. The
normalized amplitude of response x,,. /5., 15 shown on the ordinate. Regions of irregular
response are shaded, and the multiple data points, which are shown for a particular
excitation frequency, correspond to the distinct amplitudes of a subharmonic response.
Thus, following Figure 4, two data points are shown at f = 50-25 Hz. Within the frequency
window 28 Hz < f < 34 Hz, the oscillator responded in a period-two subharmonic motion,
with bifurcation at 28 Hz and subsequent coalescence to a period-one solution at 34 Hz.
With f being gradually increased, the amplitude of the period-one motion grew until local
resonance was reached at f = 45 Hz. Notably, this is approximately twice the oscillator’s
natural frequency. Just above 50 Hz, the response bifurcated to the period-two motion,
as illustrated in Figure 4. Subharmonic motions of order greater than two were not
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Figure 5. Measured (a) time records, (b) frequency spectra and (c) state space orbits for f = 101 Hz (second
excitation range), in the window of irregular response. In (b), cach vertical hashmark correspond to 10dB.
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Figure 7. (a) A madel of the single-degree-of-freedom oscillator that can contact a surface with prescribed
motion, and {b) A schematic illustration of a period-one response. ==, Surface; ——, oscillator,

experimentally observed prior to the first region of irregular motion, although the model
that is described below does predict a classic period-doubling cascade. For still larger
excitation frequencies, the pattern of (1) resonance of a periodic solution, (2) bifurcation
and (3) irreguiar vibration recurred. In particular, near an even integer multiple of f,, the
amplitude of the periodic response reached a local maximum, and necar an odd integer
muitiple, the motion exhibited period-doubling and apparently non-periodic behavior.
With the frequency interval (2i — 1), </ <(2i+ 1)f,, i=1,2,..., denoted as the ith
excitation range, the qualitative character of the observed response is similar over each
range, given that the periodic solution at f & 2if, corresponds to ¢ cycles of the surface’s
motion.

3. MODEL AND IMPLICIT RECURRENCE RELATION

A basic model of the impact system is shown in Figure 7(a). The single-degree-of-
freedom oscillator can impact the rigid surface with prescribed motion s = s, sin (w?),
where w = 2nf. Motion of the surface is specified to be unaffected by its collisions with
m. The displacement x of the oscillator is measured from its rest position, where the spring
k is unstretched and the oscillator and surface are in near contact. Impact occurs when
x =, and impenetrability of the surface requires that x < 5. Dissipation in the oscillator
by itself is neglected on the basis of the small measured damping ratio of about 0-3% in
the test apparatus. However, energy can be dissipated during impact. The specifics of this
complex process are not addressed here and, instead, impact is approximated by the
coefficient of restitution e < 1, Although e is frequently considered to be constant for a
specified pair of contacting surfaces, in practice it depends on the relative velocity at
collision and approaches unity as the velocity tends to zero.
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The oscillator is driven by the intermittent impacts associated with motion of the surface.
Between impacts, no externally applied force acts on m, so that the free response solution
is available for those time intervals. A non-linear recurrence relation is derived such that
given the time f, of the kth impact, and the displacement x; and velocity v; of the
oscillator immediately afterwards, the state of the oscillator at the instant following
the next impact at #,,, can be obtained, as depicted in Figure 7(b). In this manner, the
response of the oscillator can be systematically advanced in time, without the compu-
tational burden that is associated with direct integration of the oscillator’s equation of
motion over the (potentially long) time period which is necessary for the system to reach
steady state,

The model is non-dimensionalized in terms of the quantities

x*=x/s!ﬂﬂ,\', S*=‘s/Smaxa t*=a)ﬂt! w*=m/ﬂ)n, (2)

where @w? = k /m. After henceforth omitting the asterisk notation for convenience, the state
vector for the oscillator immediately following the kth impact is

e-f3)

Motion of the oscillator over £ € (7, 1, () satisfies ¥ + w2x = 0, where the displacement
and velocity during this free vibration interval are

x{(ty=x;cos(t — 1)+ v} sin(t — ),

v(ty= —x}tsin(t — )+ vicos(t — ) 4
The time t,,, at which the next impact occurs is therefore the first root of
VEE P sin((n,, — )+ tan ' (x7 /o)) —sin (@t ) =0, (5)
and substitution in equation (4) provides the state of the oscillator
_ cos (e — %)  sin(hi—8) |
Xi = . X 6
frt [_Sln(fk+l_tk) €os (f sy — 4 | ©)

at the instant before t,,,. The states at ¢/, and r,,, are related by continuity of
displacement, namely that x/}, , = x;, ., and by the velocity change

v = —evi, + (1 + e)w cos (wi,, ). g

In this manner, the oscillator’s state vector is advanced across the impact by the
inhomogeneous relation

o 1 0. 0 8
LA I S L (1+e)wcos(wt“1)' v

To numerically simulate the response through this procedure, initial values for the
displacement and velocity are specified, and equation (5) is solved to determine the time
at which the first collision with the surface occurs. Roots of equation (5) are found by using
a combination of the Newton—Raphson and bisection methods. The state vector (3) is
advanced across the free vibration interval by cquation (6), and then across the impact
through equation (8). This process is repeated recursively to determine the second time of
impact, and so forth. Time records of the oscillator’s motion, spectra and x—v trajectories
can be reconstructed from equation (4) and from the stored values of «, and x;. Solutions
obtained in this manner have been verified by comparison to the results from direct
numerical integration of the oscillator’s equation of motion with an adaptive Fehlberg
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Figure 8. The predicted frequency response of the model for e = 0-4. The dimensionless cusp-to-peak vibration
amplitude x, . is shown on the ordinate.

fourth/fifth order Runge—Kutta algorithm {13]. Note that in numerical integration, as
equation (5) of the recurrence relation, it is important to accurately determine the times
of impact.

A predicted frequency response diagram with ¢ =04 is shown in Figure 8 for
w, < ® < 6w,. The inset details the behavior near transition between the period-two and
period-four solutions in the first excitation range. As above, local resonance of the periodic
solutions occurs when o =~ 2i, i =1,2,... Similarly, period-doubling bifurcations and
irregular motion occur for @ =~ 2i — 1. Note that the incomplete “Feigenbaum tree”
immediately above w =1 was recorded in the measurements. Based on the overall
structure of the response diagram, the prediciions of the model agree with the exper-
imental observations, although the model does consistently overestimate the vibration
amplitude. This discrepancy could be due to the choice of the coefficient of restitution in
Figure 8, as there was substantial scatter in the measured values, which ranged between
approximately 0-3 and (-5, for the test apparatus.

4. DISCUSSION

The present solution technique does not involve two approximations that have been
made in studies of related impact systems [2, 3]. First, in the model, the surface can have
prescribed motion of arbitrarily large amplitude, and in particular, the restriction
Xonax 2 Smay 18 NOL imposed. Through non-dimensionalization in equation (2), the physical
amplitude of the surface’s motion is scaled out, and s,,,, does not appear explicitly in the
subsequent development. For this reason, the predicted physical response is directly
proportional to the amplitude of the surface’s motion. This is an interesting property of
the impact oscillator, which is derived from its piecewise linear character and which
simplifies the description of its non-linear response. The approximation x,. % s,,. i
appropriate for high frequency excitation, where the velocity of the surface is large, and
in particular near w =~ 2/, where a periodic solution experiences resonance. The approxi-
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mation is problematic for the impact system considered here when €(x,,... /$,...) = 1 in either
Figure 6 or Figure 8, Furthermore, in the frequency windows where irregular motion
occurs, the amplitude of the oscillator changes with time and does not necessarity always
satisfy the assumption that x,,, ® s,,.. However, when the motion of the surface has a
sensibly small amplitude, equation (5) provides the approximate time of impact

o eh—tan ' fjef)+n (9)

Substitution in equations (6) and (8) provides an explicit recurrence relation for the
oscillator’s state, which can be implemented and analyzed more easily than the implicit
numerical procedure which is used here.

As a second modelling issue, when the above recurrence technigue is used, the oscillator
need not reverse its direciion upon impact with the surface: namely, the restriction
(vf. )i ) <0is not imposed. In fact, motions which do not involve velocity reversal
upon impact were observed experimentally as llustrated in Figures 9(a) and 9(b). There,
the depicted motion is periodic with two impacts per response cycle. The impacts occur
in rapid succession, and only one is direction reversing. The corresponding orbit which is
predicted by the model is shown in Figure 9(c). The direction of the oscillator’s motion
remains unchanged across one of the twe impacts, and the “+”" and “— " signs which are
shown indicate the sign of the velocity before and after each impact. Furthermore, impacts
without velocity reversal were also observed in Figure 5 for non-periodic motion, In short,
although the recurrence technique used here is complicated by the implicit nature of
equation (5), the method is capable of predicting responses which are not allowed by a
simpler direction-reversing mapping. Similar observations have been made in the analysis
of a related impacting system [14].

In Figure 10, Poincaré sections, each containing 10000 points, are shown at phase
increments of 5% of one complete excitation cycle. The phase space projections comprise
three “leaves™ with narrow “stems” that extend radially outward. The fractal-like structure
of the section suggests a chaotic solution. As the excitation phase increases from zero to
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Figure 9. The periodic motion of the oscillator in which two collisions oocur in rapid succession. (a) The
measured time recard at 59 Hz; (b} the measured state space trajectory; (c) the predicted trajectory, where the
sense of the velocity before and after each collision is indicated.
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Figure 10. Poincaré sections at w =3 for different phases over the first quarter of the excitation cycle, The
nen-dimensicnalized displacement is shown on the abscissa, and velocity on the ordinate. The sections for
the sequence of planes 6=/10,..., m appear similar to those shown: (a} 0; (b} n/10: {c) 2r/10: (d) 3/10; () 4=/10;
() Sn/10.

one-quarter of the period, the structure rotates clockwise in Figure 10 by approximately
n/2 radians. Over the subsequent ranges of phase from oneg-quarter to one-half of the
excitation cycle, one-half to three-quarters and so forth, the animated sequence of sections
is similar in appearance to Figure 10. Construction of these diagrams for other excitation
ranges indicates that, in general, for irregular motion near w = 2i + 1, there are 2; + 1
stem-and-leaf pairs.

5. SUMMARY

Measured response time records, frequency spectra and state space trajectories for the
driven impact oscillator are compared to results from a non-linear recurrence relation
which is derived for the state of the oscillator from one impact to the next. To simplify
the form of the state mapping, previous models of related impact processes have specified
that the response amplitude is large compared to that of the surface, and that the direction
of motion reverses upon each impact. In the present case at least, such a model cannot
capture all classes of motion which are observed experimentally, although implementation
of the implicit technique is more involved than for a simpler mapping. The amplitude of
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the surface’s motion is scaled out in non-dimensionalization of the equation of motion,
and as a result, the two dimensionless parameters ¢ and o determine the qualitative

ch

aracter of the response, which can be either periodic or irregular. The criteria used here

for classifying the latter chaotic responses are the spectral content of the response under
a periodic excitation, the apparent non-repeatability of the state space trajectory, and the
structure of the calculated Poincaré sections.
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