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Abstract
This study presents a numerical approach to investigate the size effect on the
quality factor associated with the first mode of microcantilever vibration in
1 atm air. The numerical simulation results are verified by experiments and
compared with the approximate analytical solutions. Bulk micromachined
cantilever arrays are employed as the test vehicles. Based on the
experimental and numerical results, this paper proposes a modification to the
existing approximate models for air damping analysis by taking into account
the geometry effects of the microcantilevers. The arrived semi-empirical
equation suggests that the quality factors of the microcantilevers are
approximately proportional to L−1.62 and b0.62 at a low kinetic Reynolds
number. Thus, the quality factor of the microcantilever resulting from the
free space air can be precisely predicted for design purposes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A structure will interact with the surrounding air when
operating in an ambient air environment. Due to the scale
effect, the air effect on the microelectromechanical systems
(MEMS) device cannot be ignored. The hydrodynamic force
exerted by air flow induces damping effect on the vibrating
microstructure, and further influences the dynamic behavior
of the MEMS device. In general, the damping mechanisms
for MEMS are classified as squeeze film damping and free
space damping. The squeeze film damping has attracted much
attention as it occurs in many MEMS devices such as mirrors,
switches and resonators. Nevertheless, the free space damping
also plays an important role in various MEMS applications.
For instance, free vibrating microcantilevers have been
widely explored in biosensors [1], chemical sensors [2],
accelerometers [3] and scanning probe microscopes (SPMs)
[4]. The sensitivity and resolution of the microcantilever
devices strongly depend on their quality factors that are closely

related to the free space air damping effect. Therefore, it is
important to predict the quality factor for the microcantilever
design.

It remains a challenging task to derive an exact analytical
solution to predict the interaction between the air and
microcantilevers. The approximate analytical models have
been presented in [5–7]. Most of them are based on
the harmonic oscillating sphere theory [8], and model the
microcantilevers as a sphere or a string of spheres. These
simplified approximate analytical models have been broadly
applied to many areas including the development of micro
power generator [9, 10], study of air viscous damping effects
by a Fabry–Perot micro-opto-mechanical device (FPMOD)
[11], absolute pressure measurement [12], mass sensing
resonators [13], measurement of liquid viscosity and density
[14] and design of atomic force microscopy probes [15].
However, the geometry of the sphere-related models and the
microcantilevers is different intrinsically. The validity of
these simplified models needs to be further investigated. On
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Figure 1. Schematic illustrations of (a) the numerical model of the
cantilever beam vibrating in an ambient air environment, (b) an
equivalent damped SDOF system and (c) Bead model of the
microcantilever.

the other hand, the numerical simulation of fluid-structure
interaction (FSI) has been extensively employed in the
macro world [16], and has been successfully applied to
some MEMS applications [17, 18] as well. The numerical
calculation that minimizes the approximations could not only
simulate the dynamic behavior of the microcantilevers more
accurately but also provide more insight into the problem
of structure–fluid interaction through scientific visualization.
Thus, more innovative designs of micro structures can be
inspired.

This study presents a numerical approach, as shown in
figure 1(a), that exploits the FSI simulation to investigate the
size effect on quality factor associated with the first mode
of microcantilever vibrating in 1 atm air. The numerical
simulation results are verified by experiments and compared
with the approximate analytical solutions. Moreover, based
on the experimental and numerical results, this paper proposes
a semi-empirical expression to estimate the quality factors
of the microcantilevers for engineering design purpose. In
application, the thermal oxide microcantilever arrays with
various dimensions were fabricated and characterized.

2. Modeling and analysis

There are various existing theoretical analyses that have been
reported to study the air damping of a vibrating microcantilever
[5, 7]. As a comparison, this study employs the numerical
approach to investigate the dynamics of a microcantilever
under the influence of ambient air.

2.1. The existing theoretical analyses

As indicated in figure 1(a), the discussed vibrating
microcantilever has a length L, width b and thickness h.
In general, the hydrodynamic force induced by ambient air
will introduce added mass and added damping effects on the
vibrating microcantilever [8, 19]. The added mass that is much
smaller than the mass of cantilever beam is ignored in this
study. Thus, the dynamic characteristic of the microcantilever
vibrating at its fundamental mode can be modeled as a damped
spring–mass system [4, 20], as shown in figure 1(b). The added
damping effect exerted on the cantilever beam is approximated
by an equivalent damping coefficient ceq. The equation
of motion of this damped single-degree-of-freedom (SDOF)
system shown in figure 1(b) is

meqü + cequ̇ + kequ = F(t) (1)

in which keq = Ebh3/(4L3) is the equivalent stiffness, meq =
0.24ρbhbL is the equivalent mass and the undamped natural
frequency ωn is

ωn =
√

keq

meq
= 3.52

h

L2

√
E

12ρb

, (2)

where F(t), u, E and ρb are the external force, displacement of
the tip, Young’s modulus and density of the cantilever beam,
respectively. Equation (1) can be rewritten as [20]

ü + 2ζωnu̇ + ω2
nu = 1

meq
F(t), (3)

where ζ = ceq/ccr is the damping ratio and ccr = 2meqωn is the
critical damping. The quality factor Q of the cantilever beam
is then defined as [20]

Q = 1

2ζ
= meqωn

ceq
. (4)

Thus, the quality factor Q can be determined by the bandwidth
of the frequency response or by the exponential decay of
vibration amplitude [20].

Due to the complicated dynamics between the coupling
of structure and air, it is still a challenge to establish the
analytical model to predict the quality factor of micromachined
structures. Some simplified analytical approaches have been
reported to estimate the quality factor instead. For example,
Newell [5] has applied Stokes’ law to yield the quality factor,
as pointed out in equation (5)

QNewell = 1

24

bh2

L2

√
Eρb

µ
, (5)

where µ is the viscosity of air. Hosaka and Itao [7] have
employed a bead model shown in figure 1(c) to represent the
cantilever beam as a string of spheres. The damping ratio is
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Figure 2. The microcantilever quality factor predicted by Newell
(QNewell) and Hosaka (QHosaka) for different beam widths and lengths.

thus approximated by including the effect of flow interaction
among spheres, and can be expressed as

ζHosaka = 3πµb + 3
4πb2√2ρaµω

4ρbhb2ωn

, (6)

where ρa and ω represent the density of air and the oscillating
frequency of the cantilever beam, respectively. Thus, the
quality factor of the cantilever beam vibrating in its first mode
is

QHosaka = 1

2ζHosaka
= 2ρbhb2ωn

3πµb + 3
4πb2

√
2ρaµω

. (7)

As the kinetic Reynolds number Rk = ρaωb2/4µ is small, the
second term in the denominator of equation (7) is smaller than
that of the first term, hence, equation (7) can be rewritten as

Q′
Hosaka = 2ρbhb2ωn

3πµb
= 0.22

bh2

L2

√
Eρb

µ
(8)

which has a similar form as QNewell.
Figure 2 shows the microcantilever quality factor

predicted by Newell (QNewell) and Hosaka (QHosaka) for
different beam widths and lengths. The scaling analysis on
equations (1) and (2) indicates that the equivalent mass meq

is proportional to (Lhb) and the resonant frequency ωn is
proportional to (h/L2). According to the scaling analysis on
equations (5) and (8), the quality factors of QNewell and Q′

Hosaka

are proportional to (bh2)/L2. Consequently, the equivalent
damping coefficient ceq only varies with (L1) due to the scaling
analysis on equation (4). In short, ceq is proportional to (L1)
and (b0) based on the model of [5] and [7]. However, the
equivalent viscous damping coefficient ceq should increase as
the width of the cantilever beam increases because the drag
force exerted on the cantilever beam is increased as the frontal
area of the cantilever beam increases [21]. Thus, this study
employs the numerical simulation to discuss the validity of the
simplified model of [5] and [7].

2.2. The present numerical simulation

The study employed the CFD-ACE+ commercial software to
simulate the dynamic behavior of SiO2 microcantilevers. The
FSI function was applied to simulate the free vibration of the
SiO2 microcantilever immersed in an ambient air environment.
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Figure 3. Displacement-time history of the free end predicted from
numerical simulation.

Thus, the damping ratio as well as the quality factor can be
determined from the exponential decay of vibration amplitude
[20]. The CFD-ACE+ iteratively calculated between a fluid
solver that uses finite volume method (FVM) for Navier–
Stokes equations and a structure solver that uses finite element
method (FEM) for solid mechanics to solve the multiphysics
coupling problem.

The numerical FSI simulation model is shown in
figure 1(a). Because of the high aspect ratio (length/thickness)
of the thin film structure, the solid-shell element is used
to model the microcantilever. The Young’s modulus and
density of the SiO2 microcantilever, which were measured
by resonance test, are E = 73.38 GPa and ρb = 2.49 ×
10−15 kg µm−3. The density and viscosity of the air are ρa =
1.20 kg m−3 and µ = 1.85 × 10−5 kg (m s)–1, respectively. The
ambient air pressure is 1 atm. To simulate the free vibration
of the cantilever beam, an end-load was specified to give a
2 µm out-of-plane tip deflection as the initial condition. A
transient vibration was simulated by the software after the
initial tip deflection of the cantilever was released. Figure 3
shows a typical simulated displacement-time history of the
free end. The damping ratio ζ can be obtained after curve
fitting of the simulation results in figure 3 to the exponential
decay curve. The quality factor of the cantilever beam can be
further determined by equation (4).

3. Experiments

Bulk micromachined SiO2 cantilever beams were employed
as the test structures for experiment. The quality factors
of the microcantilevers were determined from the measured
frequency responses of the test structures. The SiO2 cantilever
beams were excited by a PZT transducer and characterized
using a laser Doppler vibrometer (LDV) system together with
a dynamic signal analyzer.

In this experiment, the SiO2 microcantilevers were
fabricated by bulk micromachining. The fabrication process
flow is illustrated in figure 4. The (1 0 0) single crystal silicon
substrate was first placed in a furnace to grow a 1.15 µm
thick thermal oxide film at 1050 ◦C, as shown in figure 4(a).
After the photolithography, the thermal oxide was patterned
by reactive ion etching (RIE), as shown in figure 4(b). Finally,
the silicon substrate was wet etched anisotropically using
tetramethyl ammonium hydroxide (TMAH) etchant. As
shown in figure 4(c), the SiO2 microcantilevers were freely
suspended on the substrate after bulk silicon etching.
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Figure 4. Fabrication process flow for the test microcantilever array.
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Figure 5. Experiment setup to measure the dynamic response of the
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Figure 6. Typical measured frequency response of a
microcantilever.

The experimental setup is shown in figure 5. The
specimen was attached to a PZT transducer. The dynamic
signal analyzer (HP 35670A) generated harmonic signal
through the power amplifier to drive the PZT transducer to
excite the cantilever beams. The LDV system (Graphtec AT-
3500) measured the dynamic response at each microcantilever
tip, and the measured signal was analyzed by the dynamic
signal analyzer. Figure 6 shows one of the typical measured
frequency responses of the microcantilevers from the dynamic
signal analyzer. The Lorentzian curve fitting for the frequency
responses with equation (9) [22] was performed to extract the
quality factors of the microcantilevers,

Frequency response function = D0(ωn/ω)√
1 + Q2(ω/ωn − ωn/ω)2

,

(9)

where D0 is a constant.

Figure 7. The predicted velocity field of air flow (a) along the beam
width and (b) along the beam length.

4. Results and discussion

The typical simulation results are shown in figure 7.
Figure 7(a) shows the simulated velocity field of air flow
distributed in a particular y–z plane (i.e. along the beam
width). Figure 7(b) shows the velocity field of air flow
distributed in a particular x–z plane (i.e. along the beam
length). Table 1 lists the quality factors of the microcantilevers
determined from the experiments. The microcantilevers
have length ranging from 160 µm to 320 µm and width
ranging from 10 µm to 45 µm. The comparison of the
measured quality factor Qexp with the predicted results from
Newell QNewell, Hosaka QHosaka and numerical simulation Qsim,
respectively are shown in both figures 8(a)–(c) and table 2.
Figure 8(c) shows that the numerical simulation results agree
well with the experimental results, whereas, figures 8(a),
(b) show that the analytical results of QNewell and QHosaka

have significant deviation from the experiment ones at some
particular dimensions of microcantilevers.

As shown in equation (5), the quality factor QNewell is
linearly proportional to the width b of a microcantilever.
According to equation (7), the quality factor QHosaka becomes
approximately linearly proportional to the width b at low
Rk. However, it is clearly shown in figure 8 that Qexp is not
linearly proportional to the width of the cantilever beam. As a
comparison, a surface fitting was applied to the experimental
results to determine the relationship between the quality factor
and the in-plane dimensions of the microcantilever. This
study proposes an improvement over the bead model shown
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Table 1. Measured quality factors Qexp for the test microcantilever array.

L\b 10 15 20 25 30 35 40 45

160 32.45 38.62 42.29 46.30 48.54 50.28 51.34 52.31
180 27.41 33.52 36.44 40.18 41.76 43.82 44.68 45.54
200 23.92 28.60 31.24 34.76 36.51 38.12 39.20 40.56
220 20.67 25.25 28.14 30.69 32.34 33.66 35.00 36.28
240 18.37 22.52 25.34 27.29 29.28 30.77 31.60 32.90
260 16.18 19.90 23.10 24.97 26.16 27.81 28.96 29.84
280 14.79 17.84 20.54 22.63 23.94 25.19 26.29 27.70
300 13.11 16.47 18.63 20.32 21.93 22.91 23.81 24.67
320 12.16 15.08 17.19 18.77 20.32 21.14 22.23 23.26

b = width, L = length, unit = µm.
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Figure 8. Comparison of predicted and measured quality factors,
(a) QNewell versus Qexp, (b) QHosaka versus Qexp and (c) Qsim versus
Qexp.

in figure 1(c) [7] by incorporating some geometry effects of
the microcantilever. Thus, the equivalent damping coefficient
established in this study has the form

(ceq)Lee =
(

A1(3πµb) + A2

(
3

4
πb2

√
2ρaµω

))

×
(

L

b

) (
b

L

)A3

, (10)

where A1, A2 and A3 are constants, A1 is the geometry factor
for Stokes drag force from a sphere to a square plate, A2 is
the geometry factor for Basset history force from a sphere to
a square plate, L

b
is the no. of sphere in the cantilever beam,(

b
L

)A3 = Geff is the geometry effective factor of the cantilever
beam.

Substituting equation (10) into equation (4), the
expression of the quality factor becomes

QLee = (0.24ρbhbL)ωn(
A1(3πµb) + A2

(
3
4πb2

√
2ρaµω

)) (
L
b

) (
b
L

)A3
.

(11)

The geometry factors were determined to be A1 = 0.69, A2 =
0.33 and A3 = 0.38 after surface fitting of equation (11) to the
measurement results in figure 8. Therefore,

QLee = (0.24ρbhbL)ωn(
0.69(3πµb) + 0.33

(
3
4πb2

√
2ρaµω

)) (
L
b

) (
b
L

)0.38 .

(12)

Note that equation (12) is a semi-empirical expression yielded
from experiment over the measurement range of 0.10 < Rk <

10.60. The variations of the quality factors QLee and Qexp are
less than 3.33%, as shown in figure 9. If the A2 term in
equation (10) is ignored at low Rk, the present equivalent
damping coefficient (ceq)Lee of the microcantilever is
proportional to L0.62 and b0.38, and the quality factor QLee

of the cantilever beam is proportional to (b0.62h2)/L1.62. As
a comparison, the equivalent damping coefficient ceq in [5]
and [7] is proportional to (L1) and (b0), and the quality
factors of QNewell and Q′

Hosaka are proportional to (bh2)/L2.
In conclusion, the approximate analytical models of [5] and
[7] overestimate the beam length effect on air damping but
underestimate the beam width effect on air damping. The
geometry effective factor Geff that is proportional to (b/L)0.38

plays an important role in this regard. As the beam width b
increases or beam length L decreases, the influence of the A2

term in denominator needs to be taken into consideration. In
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Table 2. Comparison of measured quality factors Qexp with analytical results (QNewell, QHosaka) and numerical simulation results (Qsim).

10 15 20 25 30 35 40 45

Error (%) Error (%) Error (%) Error (%) Error (%) Error (%) Error (%) Error (%)

L\b EQN EQH EQS EQN EQH EQS EQN EQH EQS EQN EQH EQS EQN EQH EQS EQN EQH EQS EQN EQH EQS EQN EQH EQS

160 −51.86 71.93 14.7 −39.31 87.70 11.1 −26.11 101.56 9.7 −15.64 105.83 5.1 −3.44 113.08 4.4 8.77 119.07 3.6 21.74 125.54 3.5 34.41 130.53 3.1
180 −54.94 66.55 14.7 −44.75 78.85 9.0 −32.24 95.06 9.2 −23.20 99.08 4.3 −11.30 109.00 5.2 −1.39 113.05 3.5 10.52 120.48 4.0 22.00 126.02 3.9
200 −58.19 59.11 12.8 −47.55 76.36 10.5 −35.98 92.83 10.7 −28.08 96.17 5.3 −17.83 104.79 5.5 −8.18 110.65 4.7 2.04 116.86 4.8 10.95 119.63 3.5
220 −60.04 55.88 13.4 −50.89 70.53 9.5 −41.26 83.90 8.0 −32.68 91.85 5.1 −23.35 100.49 5.6 −14.05 107.66 5.5 −5.54 112.09 4.7 2.51 114.99 3.5
240 −62.22 50.52 12.1 −53.73 65.19 8.4 −45.19 77.43 6.4 −36.39 88.35 5.2 −28.86 94.09 4.2 −20.99 99.74 3.4 −12.09 107.15 4.3 −5.02 109.60 3.0
260 −63.41 48.21 12.7 −55.38 63.17 9.2 −48.79 70.74 4.3 −40.77 81.34 3.0 −32.15 92.05 5.0 −25.53 96.01 3.3 −18.27 101.00 3.0 −10.76 105.97 3.0
280 −65.52 41.99 10.1 −57.12 60.26 9.2 −50.34 69.91 5.4 −43.61 77.73 2.4 −36.05 87.01 3.9 −29.10 93.37 3.7 −22.37 98.36 3.4 −17.11 99.21 1.4
300 −66.13 41.50 11.5 −59.50 54.04 6.6 −52.28 66.94 5.0 −45.32 77.02 3.2 −39.22 83.13 3.2 −32.08 91.23 4.1 −25.33 97.44 4.5 −18.93 102.03 4.4
320 −67.85 35.69 8.6 −61.14 50.40 5.4 −54.57 62.30 3.3 −47.95 72.46 1.5 −42.32 78.35 1.9 −35.34 87.46 3.5 −29.73 91.72 3.0 −24.42 94.63 2.1

EQN = error of QNewell, EQH = error of QHosaka, EQS = error of Qsim.

144



Comments on the size effect on the microcantilever quality factor in free air space

Table 3. Comparison of predicted and measured quality factors QLee and Qexp for a new microcantilever family.

L (µm) 142 162 182 202 222 242 262 282 302

QLee 39.37 33.28 28.60 24.90 21.93 19.49 17.47 15.77 14.32
Qexp 39.26 32.49 28.16 25.19 22.35 20.04 17.67 15.86 14.62
Error (%) 0.28 2.43 1.55 −1.14 −1.88 −2.72 −1.12 −0.57 −2.04
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Figure 9. Variation of quality factors QLee and Qexp with the width
and length of the microcantilever.
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Figure 10. Comparison of predicted and measured quality factors
QLee and Qexp for a new microcantilever family.

other words, the quality factor QLee is no longer simplified to
be proportional to (b0.62h2)/L1.62 as Rk increases.

To demonstrate the validity of equation (12), the SiO2

microcantilever array, with thickness h = 0.97 µm, width
b = 25 µm and length L ranging from 142 µm to 302 µm,
were fabricated and characterized. Figure 10 and table 3 show
the quality factors of the microcantilevers determined from
the experiments, and predicted by equation (12) as well. It
indicates that the results predicted by equation (12) have only
less than 3% deviation with the measurements. In summary,
equation (12) can be employed to accurately predict the quality
factor of microcantilevers.

5. Conclusions

The size effect on the first mode quality factors of
microcantilevers in free air space has been investigated by
experiments and numerical simulations. The experiments
extracted the quality factors by measuring the dynamic

frequency responses of the microcantilevers. The numerical
simulations determine the quality factors using the free
vibration model of the microcantilevers. The numerical
simulation results are in good agreement with the experimental
results. In addition, the velocity field of air flow is available
from the simulation. It provides valuable information while
designing the micromachined structures. In summary, the
numerical FSI computation is a promising method to predict
the dynamic characteristics of microstructures in an ambient
air environment. Based on the experimental and numerical
results, this study has also modified the existing approximate
models for air damping analysis by taking into account the
geometry effects of the microcantilevers. The quality factors
of the microcantilevers are approximately proportional to
L−1.62 and b0.62 at low Rk. Thus, the air damping and
quality factor of microcantilever can be precisely predicted by
the proposed semi-empirical expression for design purpose.
However, the physical meaning of these factors and the full
applicable range of the semi-empirical equation need to be
further investigated.
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