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The presence of non-classical dissipation in a general discrete dynamic system is investigated
through a perturbation method for the eigenvalues and vectors. Results accurate to second-order
are obtained, with corrections to the base solution being expressed in terms of readily-calculated
quadratic forms. Exact solutions, and the derived asymptotic ones, are compared with the
predictions of the so-called method of approximate decoupling, in which certain non-classical
dissipative terms are omitted from calculations in the eigenvalue problem. The perturbation
method is discussed through its application in several examples, indicating circumstances in
which a non-classically damped system can be well-approximated by an “equivalent” classically
damped one. Somewhat surprisingly, the addition of non-classical damping does not necessarily
increase the stability of all vibration modes, and the perturbation method is shown to be useful in

identifying those critical modes.

1 Introduction

A linear dynamic system is said to have classical normal
modes (CNM) if it possesses a complete set of real or-
thonormal eigenvectors. In general, an undamped sys-
tem of the form (2) below will always possess CNM if
certain well-established conditions are satisfied by the
system matrices. However, when dissipative forces are
present, CNM may or may not be present. Caughey
and O’Kelly (1965) established the necessary and suffi-
cient condition for existence of CNM in a damped linear
system of the general form (1). Also worthwhile to note
is the possibility that some modes will remain classical,
and others will not, in the presence of non-classical dis-
sipation (Felszeghy, 1989).

If Caughey and O’Kelly’s criterion is not met, so that
non-classical dissipation is present, treatment of free
and forced response becomes substantially more com-
plicated than in the case of classical damping. This is
particularly so because the eigensolutions become com-
plex, and orthogonality (or bi-orthogonality) relations

among the eigenvectors are more difficult to establish
(Foss, 1958; Vigneron, 1986).

Despite their accuracy, such exact methods have two
primary disadvantages: they require significant numer-
ical effort to determine the eigensolutions, and little
physical insight 1s afforded by methods that are purely
numerical. Specifically, exact methods based on such
state space formulations as (6) below do not make evi-
dent the effects of non-classical damping on the eigen-
values and modes.

In treating non-classically damped linear systems,
one approach is to ignore those damping terms that
are non-classical, and retain the others. This approxi-
mation is termed the method of approzimate decoupling
(MAD), and error bounds for it have been discussed
i (Shahruz and Ma, 1988; Shahruz, 1990; Felszeghy,
1993). More specifically, if a system is subject to non-
classical damping, how do it’s eigensolutions differ from
those of a similar, analogous, system that is classi-

cally damped? To what extent can a non-classically
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damped system be approximated by a companion clas-
sically damped one? These questions are addressed In
the present investigation.

2 Eigenvalue problem

Consider the free vibration of a discrete (or discretized)
system described by the vector equation of motion

Mi+Cii+ Kz =0 (1)

where M, C;, and K are real, symmetric, positive-
definite, N x N-dimensional matrices which operate on
the generalized coordinates z. As a result of these con-
ditions, it is always possible to simultaneously diagonal-
ize M and K by a real similarity transformation. The
required transformation is associated with the reduced
(undamped) form

Mi+ Kz=0. (2)

Let @ denote the normalized modal transformation that
simultaneously diagonalizes M and K, and transform
Eq. (1) into the normalized coordinates z. With the
relations

r=0z, 6TMO=1, 67C10=C, OTRO =A%, (3)
Eq. (1) becomes
[ 4 Coz+ AFz = (4)

where I is the identity matrix, and the superscript T
denotes transposition. The derived damping matrix Cs
is also symmetric, and AF becomes a diagonal matrix
with real positive elements.

The second-order problem is recast into an equivalent
state space format. With the definitions

I 0 Cy AF &
A“[o —A“]’ Bl—[;\*‘ 0}' y‘<,

ST}
N——

(5)
Eq. (4) becomes
Ay+Biy=0. (6)
Synchronous solutions to Eq. (6) of the form y = et
lead to the eigenvalue problem (EVP)
AMMu+ Biu=0. (7)

Although A and B; are each symmetric, positive defi-
niteness in the EVP is not assured, nor is the statement
that the matrices can be simultaneously diagonalized
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through a real coordinate transformation valid. Solu-
tions of Eq. (7), however, remain useful to the degree
that they characterize the system dynamics, but a dis-
advantage of this formulation is that the properties of
the eigensolutions are not known in advance (Vigneron,
1986).

In the MAD, the modal damping matrix Cy is de-
composed into
N Co=A+Cs, (8)

where A€ is diagonal, and C3 is symmetric but has ze-
roes on its main diagonal. In the light of Eq. (3), A° con-
tains all of the classical, proportional damping terms,
namely those on the diagonal of Cy; likewise, C3 con-
tains all of the off-diagonal dissipative terms. When the
problem (1) is proportionally damped, then C3 = 0, and
so C3 can be interpreted as dissipative coupling among
the CNM. In the MAD, C3 is approximated as being
zero.

In the present study, interest is focused on how the
behavior of (1) is altered when the dissipation is non-
classical. To this end, consider B; as comprising small
non-classical dissipation in the structure

By =B +e¢b (9)
[ Ac Ak [c o
s=[2 5] +=[0 o]

where ¢ is a scaling factor for the non-classical damping
matrix Cs = €C, and the norm of C is O(1). With this
nomenclature, the standard form of the EVP becomes

Au+ (B +eb)u =0 . (10)

3 Asymptotic forms

Consider solutions to the non-classically damped (10) in
terms of corrections to those of the classically-damped
problem as expressed in the expansions

w=ul® 4 eu® 42 (11)

/\:/\(0)+€)\(1)+5?)\(2)... ] (12)

Substitution of Eqgs. (11)-(12) into Eq. (10) and reten-
tion of terms of @(¢?) and lower yield the perturbed
eigenvalue problems:

Zero order

MO 440 ¢ By® =g (13)
First order

AW 450 4 A0 431 4 By(®) 4 py(®) =0 (14)
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Second order

2O A2 £ 2D 44D 4 A2) 44,0
+Bu® 4+ buP) =0 . (15)

In what follows, it is assumed that the A" of Eq. (13)
are distinct, and with this requirement, the expansions
(11)-(12) will provide non-secular solutions. If there

-are repeated eigenvalues; the solutions will split in the
presence of non-classical damping, and the form of the
expansions (11)-(12) must be altered.

Substitution and retention of terms of O(e?) and
lower yield the perturbed orthogonality relations

uOT Au®) = 6., (16)

uOT Ay 4 w(VT 440 = 0 (17)

2ul0T Aul® + DT AuD) = 0 (18)

wOT B0 = _2\O)g, (19)

vOT[Bu® 4 bu®] + «T Bul®) = -AV6,,,  (20)
uQT[Bu + bul] + w7 [Bull) + bul?)

+ulTBu(® = AP, (21)

Equations (13)-(15) and (16)-(21) define the EVP
and orthogonality conditions for the perturbed, non-
classically damped system (10), for which the solution
is asymptotic to the exact solution of the original prob-
lem (1).

4 First- and second-order cor-
rections

For a classically damped system, the submatrices com-
prising A and B; are diagonal. Let these diagonal ma-
trices A° and A* be given by A° = Diag(2¢awn) and
AF = Diag(w?), where the (,, and w? are real and non-
negative. This zero-order solution satisfies (12) and the
associated orthogonality relations (16) and (19). The
A(®) are given by

MO = —(uwn +iwn /1 -2,

M =

1<n<N (22)

—Cn—N‘-‘-’n—N

—iwp_ny/1 =y, N+1<n<2N

where i = /—1. The normalized vectors become

u(IO)T = {’\(10)17170"":1)170""} (23)
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ug;O)T = {Oa“')’\sl())pnaov' "7pn70)' } ’

u(Is(I))f; = {’\S\?lle-{-laOy' ";PN+1;0;"'}

u’EO)T:{A(IO)pI)O)"‘vpl)O)'“}a N+1<nS2N
In Eq. (23),if1 <n < N, then u®) has non-zero entries
only in the n** and (n + N)™ positions. Likewise, if
N+1 < n < 2N, then u® has non-zero entries in

1<n<N

the (n — N)* and n*® positions. The normalization
~ constants p, will be complex, and given by o

1
2
Pl = —— . (24)
T
First-order. The eigenvector correction u is ex-

panded in terms of the zero-order eigenvectors u? as

2N
= 3o @
k=1

v

where the aS},,), are coefficients to be determined. There
are 2N linearly independent vectors us,o); therefore,
they form a complete basis. Substitution of Eq. (25)
into Eq. (13) and use of the orthogonality relations (16),
(19), and either (17) or (20) yield the first-order correc-
tions

AL = (O by (O (26)
o) =0 (27)
(0T, (0)
o) = Un bum n#Em.

mn — Ag}o) _ /\S-,?) )
Second-order. As above, the eigenvector correction is

expanded in terms of the basis u£,°)

2N
W) = Y al” (28)
k=1

Substitution into Eq. (14), use of orthogonality (16),
(19), and either (18) or (21) yields the second-order

corrections

2N (USCO)TbUSIO))z

2) _
/\gl) - Z /\(0) . )\(0) (29)
k=1k#n n k
1 2N
1
a2 = —5 3 ey (30)
k=1

2N
1
Sy = W(/\wa% + Z a%luﬁf’ﬁbug’))
Am” = An k=1
for m # n. Equations (22)-(30) in conjunction with the
expansions (11) give the solution, accurate to second

order, of the perturbed eigenvalue problem.
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5 Discussion and application

The general method for solving a problem of the form
(1) using the derived perturbation method is outlined
as follows:

e Modal analysis on the reduced system (2) provides

AlC and Cg,

e (5 is decomposed into classical and non-classical

terms in accordance with Eq. (8),

e Matrices A, B, and b as defined in Egs. (5) and (9)

are constructed,

e The zero-order problem is solved by using
Eqgs. (22)-(24), and

o The first and second-order corrections are found by
using Egs. (25)-(30).

The asymptotic corrections are expressed entirely in
terms of the classically damped eigensolutions. In ad-
dition, implementation of the perturbation solution re-
quires only the calculation of such quadratic forms as
uSP’TbuS,?). From a computational standpoint, there-
fore, these calculations are relatively inexpensive when
compared to direct solution of the original complex
EVP. In iterative solution techniques, the perturbation
solutions can serve as useful initial estimates.

By hypothesis, b contains only the non-classical
damping terms and has zeroes along its diagonal; by
considering Eq. (26), the first-order correction is al-
ways zero. In a general sense, the MAD represents
the exact eigenvalues of a non-classically damped sys-
tem to within @(¢%)!. In a similar manner, there are
first-order corrections to the vectors, but the correction
aﬁgi remains always zero. Thus, the MAD estimates
the main diagonal of the (complex) modal matrix to
within O(e?), with off-diagonal error of O(e).

Without a rigorous treatment of error, some conclu-
sions can be reached as to the asymptotic solution’s
radius of convergence. To the degree that A1) and A(?)
are intended to represent small corrections to the base
solution A% Eqgs. (26)-(27) and (29)-(30) demonstrate
that for a good approximation, the condition

O(IAD = 2D ) > OO buld)) (31)

must be satisfied. When this condition is not met, the
“small” corrections become, in fact, large, and the as-
sumptions underlying the perturbation series are vio-
lated. The following claim is therefore made: when

1An exception is the degenerate case N = 1 discussed in Ex-
ample 1.
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,/\510) - /\S,?)| is not small in comparison with u%O)TbuSS),

the perturbation solution is a good approximation of
the exact solution, and visa versa. This claim is dis-
cussed further in the context of the examples below.

5.1 One degree of freedom

Consider. the case of N =1 for which

P (ot we)itetz=0  (32)

and the exact solution for the eigenvalues is

A= —((+e)w~+iwy/1—(C+e()?. (33)

In this case, the perturbed vectors have no meaning,
but to second order, the eigenvalue becomes

A=—((+eG)w (34)
. 9 CCI <2
-Hw( 1—(“—6\/1____C_2—522(1_1C2)3/2> ;

which is identical to that obtained by a direct Taylor
series expansion of Eq. (33) in powers of ¢.

The exact and approximate roots are compared over
a wide range of €¢; in Fig. 1. The real components of
the two solutions are identical. The imaginary com-
ponents agree well, even for remarkably large values
of the damping perturbation £¢;. For instance, when
€(1 = 3¢, there is only an 11% error in the calculation
of 3(A) and no error in R()).

5.2 Two degrees of freedom

Consider the dynamic system described by

c_ | 2Cw 0 k_[wi 0 .
CA_[ 0 ?CzwzJ'A_ 0 wi ]’ (35)
0 ¢
o=[¢ 5]

The exact characteristic equation is
X + A3 20101+ 2w2(2) (36)
+22(4wiwaliCa + w? + w? —e%c?)
+/\(2wi“)wg§~; + 'Zw‘lwg(jl) + WIQ\.«J% =0 ,

with eigenvalues found by numerically calculating the
attendant roots. As an interesting side issue, evidently,
the sign of ¢ does not affect the eigenvalues, as demon-
strated by the presence of only ¢? in Eq. (36).

Calculation of the perturbed eigenvalues is tedious
but straightforward using the theory developed above.
The results are

O = —Gor i /TTGF (1)



Appl Mech Rev vol 48, no 11, part 2, November 1995

0=
solutions
= are identical
_2__
<
g -3
-4
-5 | ] 1 j
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E critical damping
B C+€C1=1
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0 1 2 3 4

Fractional damping perturbation, ECUQ

Figure 1: Comparison of the exact and perturbation
solutions in Example 1. w =4, ( = 0.2, and {; = 0.1.
Exact solution, X x x; perturbation solution, — — —.

A = —Cows + iwa/T— (5)? (38)

with /\(11) = /\(21) = 0. As for the second-order solution,

AP =0 (39)

~1
%(/\(1‘*)) = .B_(C2w]u)2(W1C2 = W?Cl))

—1 Pwi(wa (w1616 — w2} +w2) — wi)

o 2V/1-¢¢

AP =0 (40)

() =

1 .
g%(’\(22)) = B(Czwlwz(MQQ — ws(y))
_ 1 CQWQ(QW‘{)C% — 2w1wgC1CQ +w:_,“) = wlz)

3 = £h

where the denominator is given by
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Figure 2: Comparison of the exact and perturbation
solutions in Example 2. wy = 1, wy =5, {; = 0.5, (» =
0.5, and |co| = 0.5. Exact solution, X x x; perturbation
solution, — — —.

D = (2wyway/1 = (3 /1 = (2 (41)

—2w1wa1(2 + wi + w?)

X (2wiwgy/ 1 ~Cf\/ 1 - CQE

+2w1wg<1C2 — wf — w%) .

Figures 2 through 4 illustrate the comparison be-
tween the exact solution and the asymptotic one for
several values of the system parameters w;, ws, (1, and
(2%. Several points are noteworthy. As claimed above,
the asymptotic solution performs best when |/\(10) - )\(20)|
is not small. When the difference 1s about 4, Fig. 2
demonstrates that the approximate solution is quite ac-
curate even for values as large as ec = 3. This corre-
sponds to a non-classical damping ratio of 1.5, some 3

2The solution predicted by the MAD corresponds to the case
e =0.
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Figure 3: Comparison of the exact and perturbation
solutions in Example 2. w; =2, wy =4, =0.1, (2 =
0.2, and |ca| = 0.5. Exact solution, x x x; perturbation
solution, — — —.

times the classical damping ratio. Thus, the perturba-
tion method provides an accurate approximation even
for a situation in which the non-classical effects dom-
inate the classical ones. When the error parameter is
small, as in Fig. 4, the range over which the pertur-
bation solution is accurate becomes substantially more
restricted.

As Fig. 3 and Eq. (39) show, when w(s — w21 =0,
the real components of the eigenvalues are remarkably
insensitive to increases in the non-classical damping fac-
tor ec.

Somewhat surprisingly, the addition of non-classical
damping does not increase the stability of both eigen-
values. In Figs. 2, 3, and 4, one R(X) locus becomes
more negative with increasing ec, but its companion
does not. Further, the perturbation solution predicts
opposite concavity of the ®(A) loci. This mode destabi-
lization which results when the non-classical terms are
large is a manifestation of the transition to negative
definiteness of Cy as € is increased.

The asymptotic solution is also able to predict trends
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Figure 4: Comparison of the exact and perturbation
solutions in Example 2. w; = 2.5, wy = 2.7, (4 =
0.3, ¢, = 0.2, and |eo] = 0.5. Exact solution, X X X;
perturbation solution, — — —.

in the root loci, namely, their concavity. This at-
tribute is absent in the MAD. From a design standpoint,
it is useful to know the effect of non-classical damp-
ing on a system’s stability. As demonstrated above,
non-classical damping can either increase or decrease
stability, with different behavior for different modes.
Through perturbation, the critical modes which can be
destabilized are identified. This capability is also absent
from the MAD.

The exact and approximate eigenvectors are also cal-
culated in this example. Table 1 demonstrates the com-
parison for one set of system parameters while ec is
changed. There is a substantial phase shift between co-
ordinates, even for small non-classical damping, and as
expected, this shift vanishes when the system is clas-
sically damped. The perturbation solution appears to
accurately capture the phase shift, but the MAD does
miss it entirely. Additionally, in comparing the ex-
act second mode vectors for the cases of ¢ = 0 and
3, the MAD predicts that the first coordinate has no
displacement, but with ¢ = 3, it actually has displace-
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Exact Perturbation
£C2

Second mode

{0.0 ©° )}
1

First mode

1
{0.0 (e )}

Second modcb

{0.0 (4 )}
1

First mode

1
0.0 {o.o (0‘)}
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tion are identified, including opposite concavity of the

R(A) loci in €.
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Table 1: Comparison of the eigenvectors of the exact
and perturbation solutions for Example 2. w; = 1,
we =5,(1 =0.5,(3 =0.5, and |c2| = 0.5. The case ¢ =
0 corresponds to the approximation of no off-diagonal
damping terms. '

ment greater than that of the second coordinate. In
short, non-classical damping can significantly distort
the mode shapes relative to the classically damped case,
and the asymptotic solution appears to capture the
character of these changes.

6 Summary

Non-classical damping in discrete (or discretized) mod-
els of dynamic systems is investigated through a de-
rived, second-order, perturbation method for the eigen-
values and vectors. These asymptotic results are
compared with the predictions of the commonly-used
method of approximate decoupling. The MAD repre-
sents the eigenvalues of a non-classically damped sys-
tem to within O(e?) in most cases, and estimates the
main diagonal of the modal matrix to within O(e?),
with off-diagonal error of O(e). Through examples,
other features of the MAD and the asymptotic solu-
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