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Abstract. The static deformation of micromachined beams under prescribed 
in-plane compressive stress is studied through analytical and experimental 
means over the prebuckling, transition, and postbuckling load ranges. The finite 
amplitude of the beam in its postbuckled state is predicted by modeling the 
non-linear dependence of the out-of-plane deformation on the compressive stress. 
In addition, the model explicitly considers the net effect of slight imperfections, 
which can include fabrication defects, geometric irregularities, or non-ideal 
loading, on the beam’s behavior in the near-buckling regime. As an application, 
clamped-clamped silicon dioxide beams are fabricated through conventional 
bulk micromachining, and their deflected profiles are measured through three- 
dimensional optical profilometry. The measurements are compared to the 
postbuckled amplitudes and shapes that are predicted by the model, and by 
existing simpler models that do not include the effects of either non-linearity or 
imperfection. A s  borne out by the data, when imperfections are considered, the 
beams exhibit continudus growth of the out-of-plane amplitude during transition 
from the prebuckled state to a postbuckled one, in contrast to sudden bifurcation 
at a critical load. By accounting for this behavior, the estimate of residual stress 
in the thin film from which the beams are fabricated can be improved, and the 
amplitude of common postbuckled micromachined structures can be predicted 
during the design phase. 

1. introduction 

Thin-film materials are used extensively in the areas 
of microelectronics, sensors, and actuators for their 
electrical, magnetic, and optical properties. The 
mechanical behavior of thin films is also relevant 
in the design process [l], and the consideration of 
fracture toughness, elastic modulus, and residual stress 
contributes to ensuring the reliability and functionality 
of microfabricated devices in harsh environments. For 
instance, excessive residual stress can cause failures 
through the blistering, peeling, or buckling of an 
insulating film [Z], and in the case of a magnetostrictive 
material, magnetic properties couple with residual stress 
[3]. This latter phenomenon becomes of concern when 
high-performance magnetic media and recording heads 
are fabricated. In short, methods for measuring residual 
stress, and models for interpreting those measurements, 
frame a generic problem in the use of thin-film materials. 

Several factors, including fabrication defects, con- 
tribute to the stress field in a thin film. In such pro- 
cesses as chemical vapor deposition and sputtering, the 
intrinsic stresses are not readily relaxed through either 
recovery or recrystallization mechanisms since the corre- 
sponding process temperatures are low when compared 
to the film’s melting point [4]. When processing at 
high temperature is involved, for instance during ther- 
mal growth, the stress U generated by the mismatch A a  
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of expansion coefficients between the film and its sub- 
strate can be significant. In the simple uniaxial case, the 
thermal strain is given by 

U 
E = - = AT ACY 

E 
where E is &e film’s elastic modulus. Since 
the temperature change AT in some microfabrication 
processes is substantial, and because the expansion 
coefficients are somewhat temperature dependent, the 
averaging of A a  over the process range can provide an 
improved estimate of U .  While Au might not be known 
U priori for the materials of interest, it can be measured 
indirectly by determining E in a test structure. 

Within the context of micromechanical systems, 
several approaches have been developed for determining 
stresses in thin films. With in situ techniques, the 
geometry of particular micromachined structures and 
their deformation under stress loading are measured, and 
U is determined subsequently through a model of the 
test structure’s elastic deformation. Arrays of clamped- 
clamped microbeams of different lengths have been used 
to determine stresses in plysilicon films [5,6], and 
similar techniques have been applied to thermal Si02 
[7,8]. Alternative test structures, including cantilevers, 
membranes, and rings, have been examined in a similar 
vein [9,10,11]. 

In the case of micromachined beams, available 
models are based on the linear theory, so the stress 
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is found by identifying the beam of critical length Lc 
that demarcates the shorter (unbuckled) beams in the 
test array from the longer (postbuckled) ones. With L, 
being known, classical Euler buckling analysis predicts 
the strain 

r 2 h 2  
(2) E = -  

3L: 

where h is the thickness of the film from which the beam 
is fabricated. This analysis provides the strain level at 
which an experimental structure will begin to exhibit 
significant transverse deflection. On the other hand, it 
does not predict the amplitude of deformation, which 
can be of the order of several beam thicknesses, either 
near the buckling point or in the postbuckling regime. 

In addition, transverse deflections of beams with 
lengths near (but below) L ,  are observed experimentally, 
and yet are not predicted by the model as discussed. 
Such deflections are attributed to the small imperfections 
that are present in dl reid stlUctures and which cm 
arise from fabrication defectss geometric irregu1aritieS, or 
non-ideal loading 1121. For that reason, the distinction 
between ‘unbuckled’ and ‘buckled’ beams in the test 
array, namely the task of identifying L,, can become 
blurred. Emrs in measuring L,, arising either from 
imperfections or simply from the finite number of beams 
in the array, propagate in equation (2) according to 

Figure 1. Loading of a micromachined beam in uniaxial 
compression. (a) The natural unstressed configuration, 
(b) the beam as  compressed by a prescribed end 
displacement, and (c) the postbuckled state. 

stability Of the prebuckled state of a perfect structure 
reduces to an eigenvalue problem, and its solution 
provides the lowest load level P, for which stability 
is lost and the shape w for initial postbuckling. The 

ds dL amplitude w, of that deformation, however, remains 
(3) undetermined in the linear theory. - = -2- 

E L 
The model problem considered here corresponds to 

and so the measured fractional error in L, doubles when a micromachined beam that is subjected to uniaxial 
E is determined through the simple model of equation (2). compression; this situation arises, for instance, when 

In the present study, the effects of both non- oxide is thermally grown on silicon and has application 
linearity and imperfection are explicitly considered in to, for instance, certain high-sensitivity pressure sensors. 
the stresddeformation model, and the results are applied Figure 1 illustrates a sequence of three states in the 
to the postbuckling of clamped4amped micromachined beam’s loading process: the unstressed condition So, the 
beams under residual thermal stress, Measurements of straight configuration SI with uniaxial compression, and 
deflected beam profiles demonstrate a continuous and the postbuckled state S2 in which fabricated structures 
monotonic growth of amplitude during transition from are characterized experimentally. In SO, the film is as 
the prebuckled state to a postbuckled one. The residual grown at high temperature, and the beam has length 
stress, the level of imperfection in the micromachined L .  The film and substrate in SI have cooled to room 
beams, and a geometric constant are determined through temperature, so as to compress the beam by amount 6 
a least-squares fit of the model to the measured data, to length L I  as shown in figure l(b) and impose the 
With the model and experimental technique, the residual strain E = 6 /L .  At this stage, the beam has compression 
stress in the thin film from which the beams are P I ,  but no out-of-plane deformation has yet occurred. 
fabricated can be estimated with greater precision, In S2, the beam has been released from the substrate, 
and the amplitude of the postbuckled micromachined and it has deflected with shape U). The end load does 
structures can be predicted at the design stage. no work during transition from SI to S2 because both 

of the beam’s end-points remain fixed. Therefore, the 
strain energy in S2 that is stored in compression and 
bending equals the energy in SI that was stored entirely 
in compression. Therefore, P2 < PI as a result of the 
beam stretching under finite deformation. 

Within the context of Euler-Bernoulli theory, the 
micromachined beam is modeled with flexural rigidity 
E I ,  axial stiffness EA, and clamped supports. In 
figure l(c), the arc length is 

2. Modeling and analysis 

Buckling models are categorized as being linear (small 
deformation relative to the thickness of the structure) 
or non-linear, and as being based on perfect structures 
(idealized geometry and loading) or ones with slight 
imperfections (as are realized experimentally). The 
loss of stability of an idealized elastic structure in 
its ‘prebuckled’ state occurs through bifurcation into a 
‘postbuckled‘ equilibrium. The classical analysis for the 

L, 

s = L 1 + ; i  w:“ (4) 
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where the comma subscript indicates differentiation, and 
is accurate to second order in w .  The decrease of length 
in S, relative to So is 

(5) 

To the extent that the axial strain remains sufficiently 
small to be treated as linear, the load in the postbuckled 
state is given by 

Accurate to first-order changes in length, the domain 
of integration can be changed to L,  and the governing 
equation for postbuckled deflection becomes 

E l w , ,  + E A  E - - w: dx = O  (7) ( i L L L  ) 
subject to the conditions w = w,* = 0 at x = 0 and L. 

Imperfections are included next in order to describe 
the buckling behavior at near-critical 6 (or for specified 
E ,  near-critical L). Sources of imperfection can include 
stress variation through the film’s thickness, curvature 
of the wafer, slight changes in the beam’s cross-section 
along its length, or such extemd out-of-plane loads as 
electrostatic or surface tension forces. In each case, the 
effects of imperfection on the structure’s deformation, 
particularly in the early postbuckling regime, are 
qualitatively similar. That is, initial imperfections render 
w # 0 when L < L,, and the buckling amplitude gows 
smoothly during transition from the prebuckling region 
to the postbuckling one. This observation suggests that 
in the first approximation imperfections can be ‘grouped‘ 
so that their net effect is represented by a single 
parameter in the model. To account for the physical 
effects of imperfections without the model becoming 
overwhelmed by the many contributing sources, the net 
imperfection is treated here by a predeformation w’ 
of the beam in its natural unstressed state. To the 
extent that the level of imperfection can reasonably be 
expected to scale with the structure’s size, the amplitude 
is modeled as proportional to a characteristic length; 
hence, w& = y L ,  where y is dimensionless, small, 
and typically unknown in advance. 

With imperfection so modeled, the beam’s length in 
So is 

and the change in length from SO to S, becomes 

Flexure of the beam remains calculated with respect 
to the curvature of the initially deformed beam [13]. 
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The desired form of the governing equation for finite 
deflection of an imperfect beam becomes 

w , ~ ~  = 0 (10) 

subject to the same boundary conditions as equation (7). 
Several special cases are discussed in the following sec- 
tions t6 demonstrate the applicability and limitations 
of the various buckling models that reduce from equa- 
tion (10). and that can be applied to micromechanical 
structures. 

2.1. Linear model without imperfection 

In the most straightforward case [14], non-linearity and 
imperfections are not considered, and equation (10) 
simplifies to E l w , ,  + EAEw,, = 0. Solution of 
the associated eigenvalue problem provides 

and the strain E = S/L that buckles a beam of critical 
length is determined. In the linear theory, the beam 
remains undeflected until 8, is reached, and although 
wmar is undetermined, the profile of the beam at critical 
loading is 

(12) w = -wmar( 1 1 - cos F). 
2 

The prediction of this model is illustrated in figure 2(a) 
by the bold line, where the equilibrium wmar = 0 is 
stable for S < 6, and is unstable for all larger values. 

2.2. Linear model with imperfection 
When the net imperfection is modeled by predeformation 
in SO, the governing differential equation 

EIw.,  + EAEw,, = E I W > ~ ,  (13) 

is inhomogeneous. For simplicity, the predeformation is 
chosen as 

to the extent that postbuckling behavior is governed 
largely by the component of the predeformation that 
is proportional to the lowest buckling mode 114,151. 
The error associated with neglecting the higher-order 
components of w* is judged to be small for treatment 
of initial postbuckling. 

By substituting equations (12) and (14) into 
equation (13), the dependence of the beam’s peak 
amplitude on len@ becomes 

undetermined if 6 = S, 
otherwise ’ (15) 
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S > 6, depict the two stable equilibria w& @uckled 
up) and w& (down) as in equation (16). Subject to a 
small disturbance, beams in the unstable (dashed) trivial 
state for 6 > 6, will 'jump' to either of the stable 
configurations. 

B 

8 Pre-buckling Transition Post-buckling 
< *-< 0 * 

Axial compression, 6 . 
Figure 2. Qualitative behavior in the prebuckling, 
transition, and postbuckling ranges based on (a) linear and 
(b) non-linear models. In each diagram, stable (unstable) 
solutions are shown by solid (dashed) lines, and branches 
for ideal (imperfect) geometly and loading are shown by 
bold (thin) lines. 

The model predicts a smooth increase of amplitude for 
loads below a,, as depicted by the thin solid line in 
figure Z(a) where y = 0.005. Even for that seemingly 
small imperfection, the buckling behavior and growth 
of the out-of-plane amplitude are altered, particularly 
near 6,. In place of the buckling 'point', it becomes 
useful in the present case to consider instead a region of 
transition from small to large deflections. To the extent 
that this model is linear, however, it remains incapable 
of predicting the observed postbuckled amplitudes. 

2.3. Non-linear model without imperfection 
By substituting equation (12) into equation (7). the 
relationship between w,, and L becomes 

WmaX 

= 1: 6 i 6, prebuckling 
6 = 6, bifurcation 

6 z 6, postbuckling 0 and & 4- 
(16) 

Although the beam is compressed, it does not deflect 
transversely until the end's displacement reaches 6,, and 
at that point the number of equilibrium states changes 
from one to three. In figure 2@), the bold lines for 

2.4. Non-linear model with imperfection 
The most general case of equation (10) for finite de- 
formation of a slightly imperfect structure is considered 
exclusively in the following. By specifying the linear- 
buckling mode in equations (12) and (14) as the shape 
function for both w and w*, the fourth-order, non-linear 
equation (10) is reduced to the simpler algebraic relation 

Re-writing this as wiax +aw- + b = 0, the solution is 
given in closed form by 

WmaX 

- - {--I- P > O  
2 F  a13 cos (013 + 2(n - l)a/3) otherwise 

(18) 

where fi  = (b2/4+a3/27), 0 = c o s - ' ( 3 b / ( 2 a ~ ) ) ,  
and n = 1, 2, or 3. The physical value of wm is taken 
as the real root of equation (18). and the solution so 
constructed exactly satisfies equation (10). 

For given values of the parameters E,  y and 
IIA,  the amplitude in the prebuckling, transition, and 
postbuckling regions can be evaluated in equation (18) 
as a function of L. In figure 2@), the growth of w,, 
predicted by the present model is smooth, continuous, 
and monotonic near 8,. The width of this transition 
region grows with imperfection and vanishes in the 
limit y = 0 for ideal loading and geometry. The 
maximum deviation of the present model's predictions 
and those from ones based on idealized conditions occurs 
in the near-critical loading region. In fact, that is the 
most important range insofar as determination of thin- 
film stress is concerned, as bome out by the discussed 
sensitivity of E to measurement errors in L,. 

3. Fabrication and measurement 

An array of beams with lengths between 30 and 
140 p m  was fabricated through conventional bulk 
micmmachining. An Si02 layer was thermally grown 
at 1100 "C on a polished single-crystal silicon substrate 
with (100) orientation, and it was pattemed by ion 
milling. The substrate was etched isotropically with 
a 5/15/1 mixture of CH3COOH/HNO3/HF solution at 
mom temperature [16]. When relieved from the 
substrate, the completed oxide beams were suspended 
above a cavity. Because the substrate was several 
hundred times thicker than the oxide film, neighboring 
beams in the array were assumed to be uncoupled in their 
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Figure 3. SEM photograph of an 00 pm clamped-Aamped 
beam. 

Figure 4. A portion of the microbeam array. 

out-of-plane deflections. Although the isotropic etchant 
did undercut the ends of each beam by approximately 
a half-width, the boundary was judged sufficiently rigid 
to be modeled as clamped. An SEM photograph of a 
typical microbeam in the postbuckled state, 88 p m  long, 
15 fim wide, and 2 fim thick is shown in figure 3, and 
seven such beams in the range 84-108 Wm are shown, 
in figure 4. 

A non-contact interferometric profilometry system 
was used to characterize the deflected amplitude and 
shape of the beams. The fringe pattern generated by 
interference between the light reflected from a reference 
surface and from a target microbeam provided the three- 
dimensional surface profile. In turn, the fringe pattem 
was digitized by a 256 x 256 element CCD camera, 
and the data set was reconstructed to obtain the beam’s 
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Figure 5. Measured three-dimensional profile of a buckled 
68 p m  beam, for which wmax = -1.55 pm. The profile is 
inverted for clarity. 

Figure 6. Measured x-axis profile of an 80 pm beam. 

profile. In the present case, the imaged field of view 
with a 4Ox objective lens was approximately 256 Wm by 
256 pm. The cavities on each side of the micromachined 
beams were masked in software to prevent singularity in 
the measurement along the boundary of each beam. The 
profile of a 68 pm beam measured in this manner is 
shown in figure 5 ,  and the peak amplitude was obtained 
by sectioning the data along the x-axis generator as 
depicted in the measurement of figure 6 .  These 
measurements further support the modeling assumptions 
of a clamped boundary, and of specifying the first linear- 
buckling mode as the shape function for postbuckling. 

4. Discussion 

Deflection measurements for beams of twenty different 
lengths and from six different mays on the same 
wafer illustrate the variation of out-of-plane amplitude 
with length for S specified at prebuckling, transition, 
and postbuckling levels. The data points in figure 7 
denote the average measured values, and the vertical 
bars indicate the highs and lows that were recorded 
over the ensemble of measurements. Sets of beams 
were fabricated with rectangular or trapezoidal cross- 
sections. In each case, the dependence of w, on the 
load is continuous, and is more gradual than the s b q  
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Figure 8. Comparison of measured and predicted 
profiles of beams with lengths in the prebuckling (48 pm), 
transition (56 pm), and postbuckling (72 pm)  regions. The 
measured results are taken over six beams. 

results as indicated in figure 7, the initial imperfection 
level, residual strain, and geometric constant are found 
to be 3.2 x lO-3, 3.8 x lO-3 and 0.27 pmZ, respectively. 
Therefore, the imperfection level in this caSe was nearly 

while the measured residual strain difled by only 6% 
since the oxide was grown at the same time. 

With the value of E = 66 GPa [17] for the 

becomes 0.27 GPa. By way of comparison with previous 
results, stress levels calculated from equation (1) of 

N 0.34 GPa [17], and of 0.3 GPa [18], have been reported. 
rl = C ( ( w - ) i  - (!im)i)2 If postbuckling and the gradual growth of w,- near 

i = l  6, are not considered, U can be overestimated or 
underestimated as a result of errors in extracting only L ,  

is minimized through Powell’s method over beams with from the measurements [5] .  For instance, by qualitative 
identical cross section and of N different lengths Li.  inspection alone of the beams with rectangular cross- 
Here (uJ,)~ represents the model’s prediction, and section in figure 7, a value for L, of 52 p m  (at 
(&,& is the average measured value. By identifying which wmax = 0.2 pm) could be. chosen; calculation in 
Z/A in this manner, the experimental errors from equation (2) then provides E = 4.9 x lO-3. That value is 
measuring thickness and width of the beams can be some 16% higher than the one determined by using the 
reduced, particularly if the cross-section is irregular. present technique of fitting the model to the postbuckled 
The best fit of the model to the data for a rectangular deflections. If, on the other hand, L, is chosen to be 
cross-section in figure 7 is obtained with the residual 60 F m  (where w, = 1.02 pm), the value estimated by 
thermal strain E = 4.1 x lO-3,  the geometric parameter equation (2) for E is only 90% of the present value. In 
I / A  = 0.31 fim2, and the net imperfection y = 3.7 x this sense, the ambiguity in identifying the critical load 
lO-4. For a beam of length 100 p m  and thickness condition is reduced with the present technique to the 
2 pm, for instance, this value of y corresponds to a extent that E is found by a least-squares fit of the model 
net imperfection of approximately 1.9% of the beam’s to the data over a range of L .  
thickness. For this value of E ,  equation (2) provides The stress estimate obtained through the companion 
L, = 56 pm, at which w, = 0.58 pm, some 30% technique of Lin and Pugacz-Muraszkiewicz [7] is based 
of the beam thickness. The deflections predicted by the on the postbuckled load Pz. As discussed, Pz < P I ,  and 
model with these parameters are also shown in figure 7, is not related to E through the simple relation (1). For 
and as can be seen, the model captures the data in each the case of a 100 pm beam that deflected at 3.25 fim, 
of the three load ranges. Pi = 8 mN and PZ = 4.3 mN. Use of P2 in the place 

For the case of trapezoidal cross-sections, the of Pi in equation (2) underestimates U by some 46%. 
imperfection level becomes larger. From profilometry underscoring the need for inclusion of the postbuckling 
and inspection of SEM photographs, the trapezoidal behavior in the stress calculation. 
cross-sections were measured to be approximately 3 p m  Once E ,  Z/A. and y are determined, both the 
wide on the upper surface and 15 pm wide on the amplitude and shape of the postbuckled micromachined 
lower. From the deflection measurements and model beams can be predicted. As shown in figure 8, the 
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Figure 7. Comparison of the measured and predicted 
results for wma. The parameters in equation (17) are 
determined by calibrating the model (sotid line) to the data 
points (0, 0).  Measured results are taken over six beam 
arrays. 

bifurcation within the 4 0 6 0  p m  range that is predicted 

to the presence of initial structural imperfections, and is 
captured by w’ in equation (IO). 

The model is calibrated to the measurements by 

undetermined E ,  y .  and I / A  treated as the degrees of 
freedom, the error 

by simp1er bucHing models’ This behavior is attributed ten times greater than for the rectangular cross-section, 

a least-squares fit Of equation (17)’ with the as-yet- oxide’s elastic modulus, the thermal stress in the film 

(19) 
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Figure 9. Gimbal spring with one translational (out- 
of-plane) and two rotational (pitch and roll) degrees of 
freedom. The postbuckled shape allows attachment to the 
central platform. 

measured beam profiles support the predicted ones in 
each buckling region. The model can be applied to 
predict the deflection amplitude for beams with different 
cross-sections and lengths when E and y are known. To 
the extent that the model can predict the postbuckled 
amplitude, micromachined structures can be designed 
with specified out-of-plane geometry. One such example 
is the the.-degree-of-freedom gimbal spring that is 
shown in figure 9 [19]. 

5. Summary 

The contributions of this study include an improved 
model and measurement technique for determining 
residual thin-film stress based on the buckling of 
diagnostic micromachined smctures,  and for predicting 
in advance their finite postbuckled amplitude. The 
residual strain level is found by calibrating the model 
against the measured data, so that the width, thickness, 
and cross-section of the beam need not be  measured 
directly. Further, the method does not require a 
particularly high resolution of beam length in the array, 
and so the array can comprise fewer elements. 

Buckling behavior in the transition region is sensitive 
to the net level of imperfection, and cannot be predicted 
with fidelity by  models that assume idealized geometry 
and loading. This point has implications for the accurate 
prediction of residual stress when the beam of critical 
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length L,,  which in idealized models demarcates the 
‘unbuckled‘ beams from the ‘buckled’ ones, is to be 
identified. 
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