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Abstract—CMOS-MEMS resonators, which are promising 
building blocks for achieving monolithic integration of MEMS 
structure, can be used for timing and filtering applications, 
and control circuitry. SiO2 has been used to make MEMS reso-
nators with quality factor Q > 10 ,4  but temperature instability 
remains a major challenge. In this paper, a design that uses an 
embedded metal block for temperature compensation is pro-
posed and shows sub-ppm temperature stability (−0.21 
ppm/K). A comprehensive analytical model is derived and ap-
plied to analyze and optimize the temperature coefficient of 
frequency (TCF) of the CMOS-MEMS composite material 
resonator. Comparison with finite element method simulation 
demonstrates good accuracy. The model can also be applied to 
predict and analyze the TCF of MEMS resonators with arbi-
trary mode shape, and its integration with simulation packages 
enables interactive and efficient design process.

I. Introduction

Vibrating micromechanical resonators capable of 
providing high Q and zero dc power consumption 

have been implemented for timing references in a variety 
consumer electronics [1] [2]–[4], leading to smaller size 
and lower cost compared with conventional electrical 
components, such as crystal [5], [6], SAW [7], and film 
bulk acoustic resonator (FBAR) [8] resonators. Neverthe-
less, the discrete nature of these off-chip micromechanical 
resonators still impedes the system miniaturization and 
circuit integration for future multiband, multimode wire-
less transceivers [9], vibrational inertial sensors [10], and 
timing references [11], [12]. To realize MEMS resonators 
monolithically integrated with circuitry, in recent years 
CMOS-MEMS resonator platforms based on a foundry-
oriented 0.35 µm 2-poly-4-metal (2P4M) CMOS technol-
ogy [13]–[15] and 0.18 µm 1-poly-6-metal (1P6M) CMOS 
process [16], [17] have been developed to fabricate inte-
grated vibrating micromechanical structures side by side 

with circuits. However, due to the limited structural ma-
terial option (i.e., metal and oxide) in CMOS technology, 
CMOS-MEMS resonators are mostly made of metal-rich 
structures, suffering relatively low Q and poor thermal 
stability [15], as compared with conventional silicon-
based resonators. To solve the low-Q issues resulting from 
metal, a square plate oxide resonator composed of sili-
con dioxide (SiO2) with embedded metal electrodes via 
a CMOS 0.18 µm process and a metal etching technique 
has been successfully developed with resonator Q exceed-
ing 10 000 [18], as shown in Fig. 1. But this design has 
poor thermal stability due to the oxide-rich structure, 
which has a positive temperature coefficient of Young’s 
modulus (+TCE) [19].

To address thermal stability of capacitively transduced 
resonators, researchers have demonstrated passive tem-
perature compensation techniques, such as the stress in-
duced frequency compensation [20], composite structures 
consisting of silicon dioxide [21]–[23], and degenerate dop-
ing [24]–[26], without consuming excessive power [27] or 
requiring complicated active compensation parabolic-type 
control circuits [28], [29]. Among these passive approach-
es, composite structures consisting of silicon dioxide have 
recently become mainstream to achieve first-stage tem-
perature compensation; because it is easy to process and 
has TCE of opposite sign relative to most other materi-
als commonly used in CMOS-MEMS, it can thus be used 
to negate the temperature dependence of other materials. 
However, the temperature coefficient of frequency (TCF) 
for complicated composite structures can be difficult to 
control and predict analytically, leading to time-consum-
ing simulations and a nonintuitive design process. In this 
work, we propose an analytical model for TCF based on 
perturbation theory capable of analyzing composite and 
unreleased structures with arbitrary material distribution 
and suitable for arbitrary composite material resonators. 
The model greatly accelerates the simulation process in-
volved in designing a thermally stable resonant structure. 
As will be shown, the first-order TCF can be lowered from 
high positive value (+93 ppm/K) without compensation 
to sub-ppm level (−0.28 ppm/K) with the proposed com-
pensation (according to simulation). The latter meets the 
requirement of high performance micromechanical oscil-
lator for future timing devices or frequency synthesizer 
applications.
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II. Modeling of Temperature Coefficient  
of Frequency

To demonstrate the ability to tune the thermal stabil-
ity of bulk mode resonators, an oxide (+TCE) structure 
is embedded with metal (−TCE) blocks using CMOS-
MEMS technology, achieving passive temperature com-
pensation. This leads to the possibility of achieving a 
CMOS-MEMS resonator with high-Q as well as low TCF. 
A 0.18-µm 1-poly-6-metal standard CMOS process with 
diverse structural configuration and flexible material op-
tion is utilized to construct the composite bulk acoustic 
Lamé mode resonator. The resonator can be modeled as 
the parallel combination of multiple square plates made 
of different material compositions as shown in Fig. 2, and 
each of these plates can be treated as a separate Lamé 
mode resonator. The thickness of mat.1 (hmat.1) and mat.2 
(hmat.2) is 0.53 and 0.85 µm, respectively, and the plate 
side length is 22.95 µm. Driving and sensing capacitors 
have a gap size of 0.42 µm. Anchors are draw to scale in 
Fig. 2. Because layer thickness h is small compared with 
resonator side length, plane stress approximation is used 
and vibration is assumed to be 2-D only, with no depen-
dence on the thickness dimension. The structure is com-
posed of 3 types of plates: a metal-based plate embedded 
with oxide blocks (mat.1), an oxide-based plate embedded 
with metal blocks (mat.2), and one made purely of oxide 
(oxide). The embedded metal electrodes and oxide edge 
for etching protection [18] are neglected for a simplified 
illustration of the model, but will be included in the re-
ported TCF of the final design. The overall linear TCF of 
the composite body is given as a linear combination of the 
TCFs of each single layer plate, as shown in (1). Detailed 
derivation is provided in Appendix A.

	 TCF
TCF TCF TCFmat.1 mat.2 ox=

A B C
A B C

⋅ + ⋅ + ⋅
+ +

,	 (1)

where

	 A h f= 2
mat.1 mat.1 mat.1ρ ,	 (2)

	 B h f= 2 2 2
2

mat. mat. mat.ρ ,	 (3)

	 C h f= 2
ox ox oxρ .	 (4)

In the above expressions, for a particular plate of type 
“mat,” TCFmat is the TCF calculated for each single layer, 
hmat is the layer thickness, fmat is the resonant frequency 
of that single layer plate, and ρmat is the plate’s effective 
density,

	 ρ
ρ
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where Ω represents resonator’s spatial domain. The thick-
ness of each layer is defined by the foundry, and thus hmat 
is known from the design. TCFmat and fmat are variables 
dependent on the design, namely, embedding of compen-
sating material. A fast analytical model for deriving these 
values given a certain design is the focus of the rest of this 
paper.

The overall TCF of a multilayer composite resonator 
can be calculated if the resonant frequency and TCF of 
each type of single layer plate are known. In this section, 
an analytical model for predicting the resonant frequencies 
and TCF of a generalized composite bulk acoustic resona-
tor is presented. This analytical model lays the foundation 
for calculating and optimizing the TCF of the aforemen-
tioned multilayer CMOS-MEMS resonator, but it can also 
be applied to quickly calculate the TCF of any MEMS 
resonator given its material composition and mode shape. 
For this particular multilayer CMOS-MEMS resonator, as 
will be shown in Section III, all the variables needed to 
calculate the overall TCF of the multilayer composite ma-
terial resonator can be derived based on the unperturbed 
2-D Lamé mode shape and material properties using this 
analytical model.

Fig. 1. A CMOS-MEMS Lamé mode resonator composed of SiO2, dem-
onstrating Q > 104.

Fig. 2. Composite material mulitlayer Lamé mode CMOS-MEMS resona-
tor for temperature compensation. The structure can be viewed as the 
parallel combination of 9 single layer plates. Two layers of mat.1, 2 layers 
of mat.2, and 5 layers of oxide.
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A. Frequency Perturbation Due to a Change  
in Material Property

The resonance frequency of a mechanical resonator 
shifts due changes in material properties and temperature. 
As will be shown later, temperature change leads directly 
to change in material properties. As shown in Fig. 3, a 
metal-based plate is used as an example. At room temper-
ature, the resonant frequency of a purely metal resonator 
[Fig. 3(a)] is fmetal(t0). Embedding with oxide blocks shifts 
the room temperature resonant frequency to fmat.1(t0) 
[Fig. 3(b)]. Temperature will further shift the resonant 
frequency of this composite material resonator to fmat.1(t0) 
[Fig. 3(c)]. Perturbation theory is used to understand the 
above process and provide an analytical model to predict 
frequency shift due to material change and temperature 
change. A quarter plate is used here due to the symmetry 
of the Lamé mode, as shown in the inset of Fig. 1.

The elastic field equations are formulated as a general-
ized Hermitian eigenproblem, which offers an elegant ex-
pression for the resonant frequency shift and an intuitive 
approach to study the relationship between frequency and 
material property of all resonant structures. In the ab-
sence of external driving force, the acoustic field obeys the 
following equations [30]:

	 ∇ ⋅
∂
∂

T
v

=
ρ
τ ,	 (6)

	 ∇
∂
∂sv
S

= τ ,	 (7)

where T, ρ, v, τ, and S represent stress field, density, ve-
locity field, time, and strain field, respectively. Eq. (6) 
is the equation of motion, and (7) is the time derivative 
of the strain-displacement relation. The stress and strain 
tensors are simplified to two 6-dimensional vectors, using 
Voigt notation, which simplifies a full pair of subscripts 
to a single abbreviated subscript. The two differential op-
erators are divergence operator and strain-displacement 
operator, respectively. They are defined as follows [30]:
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Thus, the time harmonic acoustic field equation can be 
simplified into the following form:

	 −∇ ⋅ ∇c u us: = ,2ω ρ 	 (10)

where u is the displacement field and c is the stiffness 
matrix. This is of the form of a generalized Hermitian 
eigenvalue problem:

	 ˆ ˆ ,A Bu u= λ 	 (11)

where

	 ˆ ,A = :−∇ ⋅ ∇c s 	 (12)

	 ˆ ,B = ρ 	 (13)

	 λ ω= 2.	 (14)

In this formulation, Â and B̂ are Hermitian operators, 
and λ is the eigenvalue and equals angular resonance fre-
quency squared.

Before perturbation is introduced into the system, some 
mathematical notations and identities need to be defined:

1) Double Dot Tensor Product: The double dot tensor 
product notation used above implies the summation over 
pairs of repeated full subscript (kl) or summation over re-
peated single abbreviated subscript (J). For example the 
stress can be expressed as

	 T S T S T S
ij

ij ij
J

J J: = =∑ ∑ ,	 (15)

	 T c S c S c S
kl
ijkl kl

J
IJ J= : = =∑ ∑ .	 (16)

2) 〈u1 | u2〉: This denotes the inner product of a two-
vector field and is defined as

	 〈 〉 ⋅∫u u u u1 2 1
*

2| =
Ω

Ωd .	 (17)

The superscript ∗ indicates complex conjugate. Complex 
phasor quantities are used to represent strain and stress 
fields for algebraic simplification.

3) 〈∇su | T〉 = −〈u | ∇ ∙ T〉: This is a useful equality rela-
tionship, which is crucial to the derivation. It states that 
∇s is the adjoint of −∇∙. Detailed proof is provided in 
Appendix B.

4) Â and B̂ Are Both Hermitian: This leads to the fact 
that ˆ ˆAu Bu= λ  is a generalized Hermitian eigenproblem 
with real eigenvalues and orthogonal eigenfunctions. De-
tailed proof is provided in Appendix C.

Under the framework of this generalized Hermitian ei-
genproblem, now perturbation is added to the system. In 
the case of passive compensation using composite materi-
als, the perturbation is due to a shift in material property 
as the embedded material is different from the original 

Fig. 3. (a) Homogeneous metal plate. (b) Oxide blocks are embedded. (c) 
Temperature change then induces further frequency shift.
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material. In this case, aluminum is embedded in SiO2 and 
vice versa. Perturbations are added to the operators, eigen-
function and eigenvalue. Superscript indicates the order of 
the perturbation; 0 represents the original unperturbed 
system and 1 represents the first-order perturbation. In 
this analysis, higher order perturbations are ignored.
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The original unperturbed field and the new field both 
obey the generalized Hermitian eigenproblem. Thus
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The zeroth order terms cancel out and the first-order per-
turbation simplifies to

	 ˆ ˆ ˆ ˆ ˆ .A u A u B u B u B u1 0 0 1 0 1 0 0 0 1 1 0 0=+ + +λ λ λ 	 (20)

Performing an inner product with the unperturbed field 
u0 yields

	
〈 〉 + 〈 〉
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Because Â and B̂ are both Hermitian and the unperturbed 
field still obeys the original eigenequation, it follows that

	〈 〉 〈 〉 〈 〉 〈 〉u A u A u u B u u u B u0 0 1 0 0 1 0 0 0 1 0 0 0 1| = | = | = |ˆ ˆ ˆ ˆ .λ λ 			
		  (22)

Consequently, first-order perturbation of the eigenvalue 
can be derived:

	 〈 〉 〈 〉 + 〈 〉u A u u B u u B u0 1 0 0 0 1 0 0 1 0 0| = | |ˆ ˆ ˆ ,λ λ 	 (23)
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where

	 ˆ ,A c1 = :−∇ ⋅ ∇∆ s 	 (25)

	 ˆ ,B 1 = ∆ρ 	

	 λ ω ω1 0= 2 .∆ 	

Consequently, the first-order perturbation of the reso-
nant frequency can be derived:
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Because 〈∇su|T 〉 = −〈u|∇ ∙ T〉, the above expression can 
be rearranged to the following form:
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Considering that ∇su0 = S0, thus the first term in the 
numerator of the (26) can be interpreted as the first-order 
perturbation in potential energy or strain energy (ΔU) 
due to change in material stiffness matrix and the second 
term in the numerator can be interpreted as the first-
order perturbation in kinetic energy (ΔK) due to change 
in material density. Thus the first-order correction of the 
resonant frequency can be written in a simple and elegant 
form based on the fact that at resonance, U0 = K0:

	
∆ ∆ ∆ω
ω 0 0 0=

1
2
U
U

K
K

−






.	 (27)

Before proceeding to introduce temperature change, a 
crucial correction needs to be made. Eq. (26) offers the an-
alytical form based on which frequency shift can be calcu-
lated. In the expression, unperturbed strain field interacts 
with the change in stiffness matrix to give the correction 
in strain energy. In the case of embedding metal blocks 
inside SiO2 plate and vice versa, the perturbation of stiff-
ness matrix, Δc, is comparable with c itself and thus it 
is no longer a small perturbation. In this scenario, the 
unperturbed field needs to be expressed using a variable 
that will remain continuous [31], [32]. Thus (26) needs to 
be rewritten using the unperturbed stress field T0 instead 
of strain field S0, which will experience a discontinuity 
(namely, S is no longer continuous) due to Δc whereas 
T will remain continuous. Because the velocity field and 
displacement field will always remain continuous, regard-
less of material embedding, the other terms in (26) remain 
correct. The new formula is written as

	
∆ ∆ Ω ∆ Ω
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where

	 T c u0 0 0= : ∇s ,	 (29)

	 ∆( ) = ( ) ( ) .1 0 1 1 0 1c c c c− − −+ − 	 (30)
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B. Temperature-Induced Frequency Perturbation and TCF

Frequency perturbation due to material property 
change is derived in the previous section. Because tem-
perature affects the material properties, its influence on 
the resonant frequency can be derived based on (28).

Temperature-induced density change is ignored for sim-
plicity, thus ∂ρ/∂t = 0. But its effect can be added back to 
the formulation. To the first order, temperature-induced 
perturbation can be written as

	 ∆ ∆c c t t= ( )∂ ∂/ ,	 (31)

	 ∆ ∆ω ω= ( )∂ ∂/ t t,	 (32)

where t represents temperature.
Substituting back into (28) and applying chain rule, 

one finds:
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∂
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Ω
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Notice that the superscript 0 denotes unperturbed 
fields and resonant frequency at the reference tempera-
ture, namely, room temperature. But this unperturbed 
field should already have been affected by the embedded 
compensating material because we are now dealing with 
temperature perturbation on top of perturbation due to 
material embedding.

For simplicity, an isotropic material is chosen in which 
every element in the stiffness matrix c is proportional to 
Young’s modulus E. Thus ∂c/∂t can be written as

	
∂ ∂ ∂ ∂

→ ∂ ∂
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c t
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/ /
/

/
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As a result (33) can be written as
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On the left side of (35), (∂ω/∂t)/ω0 is simply the definition 
of temperature coefficient of frequency (TCF). Thus the 
TCF of the resonator can be expressed as

	 TCF
TCE d

d
=
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where U r0( )
�

 is the strain energy density at location 
�
r, and 

K0 is the total kinetic energy of the resonator.
This is an important and powerful result which gives an 

analytical model for calculating the TCF of any MEMS 

resonator with arbitrary mode shape, as long as its ma-
terial properties and configuration and its unperturbed 
(room temperature) mode shape are known. The method 
works for both in-plane and out-of-plane resonant modes.

For MEMS resonator made of homogeneous material, 
the TCE term can be pulled outside the integral and due 
to equal partition of kinetic energy and strain energy at 
resonance, TCF = 1/2∙TCE. For MEMS resonator made 
of composite material, each material TCE is weighted by 
the local strain energy density, namely the part of resona-
tor that has larger strain energy concentration is more 
powerful in determining the TCF of the entire device 
through its local TCE. If the device is made of several 
domains of homogeneous material, such as metal blocks 
embedded in an oxide plate, the above equation can be 
rewritten as

	 TCF
TCE d

=
2

0

0
Ω

Ω∫ ⋅i iU

K
,	 (38)

where subscript i represents the ith homogeneous domain.
In conventional TCF analysis, resonant frequency needs 

to be calculated at various temperatures and its change 
versus temperature gives the TCF. For resonating struc-
tures that do not have free boundaries, namely, resonators 
that are anchored throughout their perimeter or fully con-
nected to the substrate, eigenfrequency simulation often 
fails to distinguish the frequencies of the desired resonant 
mode because the mode extends to the entire wafer or 
substrate, and perfectly matched layers (PMLs) are often 
necessary. As a result, time-consuming frequency domain 
sweeps have to be performed to locate resonance peak 
accurately. The above result offers a quick and intuitive 
analytical approach to derive the first-order TCF of any 
MEMS resonator, given its unperturbed (or, room-tem-
perature) mode shape, which only needs to be computed 
once and may also be approximated in analytical form. 
This approach helps designers choose the ideal location to 
place thermal stability compensation blocks without time-
consuming simulation.

C. Combining Material Embedding With  
Temperature Change

So far two types of perturbations have been intro-
duced—structural perturbation due to material embed-
ding and thermal perturbation due to temperature change. 
Strictly speaking the unperturbed field in (36) is the per-
turbed field after structural perturbation, thus it is not 
the same as that in (28). In practice, the unperturbed field 
before structural perturbation, namely the mode in homo-
geneous material [as in (28)], can be used in (36) without 
introducing too much error, as will be shown in Section 
III. The reasoning behind is that the change in stiffness 
Δc and change in density Δρ can be broken up into con-
tributions from temperature change and changes in mate-
rial due to material embedding. When all of these compo-
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nents yield small effects, they can be lumped into a single 
perturbation that results in a small change in frequency. 
In this case, knowing the mode shape of the homogeneous 
resonator at room temperature suffices to give the fre-
quency shift due to both structural perturbation (mate-
rial embedding) and thermal perturbation (temperature 
change). The mode shape for a homogeneous resonator is 
often easy to simulate, approximate, or may even be avail-
able in analytical form. On the other hand, if material 
embedding leads to significant change or better accuracy 
is needed, the mode shape after structural perturbation, 
namely, mode shape of the composite resonator, should be 
used in (36).

III. Comparison With Finite Element Method 
(FEM) Simulation

In this section, the proposed analytical model is im-
plemented to determine the TCF of a multilayer CMOS-
MEMS composite material Lamé mode bulk acoustic 
resonator. A step-by-step guide is given and the results 
are compared with COMSOL finite element simulation re-
sults, showing good matching between the analytical ap-
proach and simulation.

A. Unperturbed Mode Shape

Because the resonator side length is much larger than 
its thickness, the displacement field is assumed to be inde-
pendent of height, and can be written as [33]

	 u kx kyx = ( ) ( )sin cos ,	 (39)

	 u kx kyy = ( ) ( )−cos sin .	 (40)

As a result, the strain field can be derived using the fol-
lowing relationship:

	 S
u
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u
y

u
xxy

x y=
∂
∂
+
∂
∂

.	 (43)

With the above result and using plane stress approxima-
tion, the stress field distribution can be calculated:

	 T
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S Sx x y=
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E

S Sy x y=
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( )2−
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ν
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	 T
E

Sxy xy= 2(1 ) ,
+ ν 	 (46)

where E is the Young’s Modulus and v is the Poisson ratio.

Since this is essentially a 2-D mode, the 6 by 1 stress 
and strain vectors (T and S) can be simplified into 3 by 
1 vectors, which only have x, y, and xy components. The 
stiffness matrix c can also be simplified. Thus,

	 T c S= : ,	 (47)
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B. Single Layer Frequency Shift Due  
to Material Embedding

Based on the unperturbed mode shape and the ana-
lytical model, as expressed in (28), the resonant frequency 
shift of a single layer can be calculated. The analytical 
model is tested using the structure shown in Fig. 4, which 
allows temperature compensating blocks to be placed at 
different locations on the homogeneous SiO2 plate. A 7 
× 7 placeholder is created, and (i, j) indicates that the 
temperature compensating block is put in the slot at the 
intersection between the ith row and jth column in the 
grid. For simplicity, only the first quadrant of the struc-
ture is shown due to mode symmetry (inset of Fig. 1). 
The results of adding metal compensating blocks to the 
oxide-based plate (mat.2) are shown and analyzed in this 
section. Embedding oxide blocks inside metal-based plate 
(mat.1) yields similar results with comparable accuracy, 
except that the trend is opposite, because the TCEs of 
aluminum and SiO2 have opposite signs.

Fig. 5 shows the resonant frequency shift at room tem-
perature due to metal embedding at different locations in 
the test structure. Because the mode shape is symmetric 
around the plate diagonal, the effects of blocks placed at 
(i, j) and (j, i) are identical. In places where aluminum 

Fig. 4. Test structure to benchmark the analytical model with FEM 
simulation. It has a 7 × 7 place holder for material embedding. Only the 
first quadrant of the plate is shown, due to symmetry of the Lamé mode.
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replaces SiO2, the strain energy density decreases due to 
a larger Poisson ratio and the kinetic energy density in-
creases due to a higher density. This leads to ΔU < 0 and 
ΔK > 0, and consequently resonance frequency drops ac-
cording to (27). It is found that row 1 is almost flat. This 
means blocks placed at row 1 cause very similar frequency 
shift regardless of their corresponding column locations. 
This can be verified from the potential and kinetic en-
ergy density distributions in the unperturbed resonator, 
shown in Fig. 6. At location (1,1), strain energy density is 
large and kinetic energy density is small; at location (1,7), 
kinetic energy density becomes large and strain energy 
density becomes small. Consequently at location (1,1), the 
frequency drop is mainly due to strain energy decrease, 
whereas at location (1,7), the frequency drop is mainly 
due to kinetic energy increase. The contributions from ΔU 
and ΔK shift weight in the middle, but their combined 
contribution remains more or less the same, leading to the 
weak column position dependency of row 1. In contrast, 
in row 7, column position has stronger effect on the fre-
quency shift, because strain energy density remains negli-
gible along the entire row but kinetic energy density drops 
significantly from (7,1) to (7,7), leading to a stronger col-
umn dependence. Column dependence gradually increases 
when transitioning from row 1 to row 7.

Fig. 7 shows that the analytical model can accurately 
predict the resonance frequency shift due to material em-
bedding at various locations and thus offers intuition on 
how the frequency shift relates to embedding location and 
material properties. In practice, more than one block will 
be embedded into the plate. Table I shows that the ana-
lytical model remains accurate even when multiple com-
pensating slots are used. The analytical model is capable 
of predicting the resonant frequency shift due to material 
embedding within 7% accuracy. Thus the weighting fac-
tors A and B in (1) can be calculated based on the new 
resonant frequency of mat.1 and mat.2. However, to derive 
the overall TCF of the multilayer structure, single layer 
TCFs must be calculated.

C. Single Layer TCF

In this section, (36) is applied to calculate the single 
layer TCF. Though this is only an approximation, the 
same unperturbed stress field as that used in the previous 
section, namely the field of a homogeneous plate, will be 
used as T0 in (36). Using the same test structure as shown 
in Fig. 4, the single layer TCFs due to material embedding 
at one single slot are shown in Fig. 8. Fig. 9 shows the er-
ror between the FEM simulation and the analytical mod-
el. A maximum percentage error of 2.2% occurs when the 
compensating block is at the center of the plate, namely 
at location (1,1). In practice more than one compensat-
ing block will be embedded into the single layer. Table II 

Fig. 5. Resonant frequency shift of a single layer SiO2 plate due to a 
single block of metal embedded at various locations. Comparison be-
tween (a) FEM simulation and (b) analytical model shows good ac-
curacy. The unperturbed resonance frequency is 56.81 MHz. Maximum 
frequency shift is 0.26%.

Fig. 6. Kinetic and strain energy density of the Lamé mode. Material 
properties of aluminum and SiO2 are also shown. The color bar indi-
cates relative energy density normalized to the maximum kinetic energy 
density.

Fig. 7. (a) Difference between frequency shifts predicted by the FEM 
simulation and the analytical model, in kilohertz, and (b) the percentage 
error, when the metal compensating block is placed at different locations 
on the oxide plate. The unperturbed resonant frequency is 56.81 MHz.

TABLE I. Comparison Between FEM Simulation  
and Analytical Model in Determining Resonance Frequency 

When Multiple Compensating Aluminum Blocks  
Are Embedded in a SiO2 Plate.

Resonant  
frequency  
= 56.81 MHz

Frequency shift 
FEM (MHz)

−0.50 −1.08 −2.29 −1.80 −1.96

Frequency shift  
analytical model  
(MHz)

−0.51 −1.11 −2.38 −1.86 −2.08

Error (%) 2 2.7 3.9 3.3 6.1
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compares the results calculated based on (36) and those 
calculated from FEM simulation.

The error is due to the fact that stress field T0 of the 
homogeneous plate, instead of that of the composite plate, 
is used in calculating the TCF according to (36). An easy 
remedy is to numerically simulate the mode shape of the 
composite plate including the compensating material em-
bedded and then use this more accurate mode shape as 
the unperturbed field in (36). Fig. 10 shows the TCF due 
to a single embedded block using this semi-analytical ap-
proach and the model matches full-blown FEM simula-
tion within 0.3% at the maximum error location. Table 
III shows a comparison between the semi-analytical ap-
proach and the FEM simulation using different compen-
sating configurations with multiple compensating blocks 
involved. Improved accuracy can be observed by compar-
ing Fig. 11 with Fig. 9 and Table III with Table II.

D. Multilayer Resonator With Sub-ppm TCF

Previous steps have demonstrated the procedure and 
result for calculating the frequency shift and TCF of a 
single layer of the composite Lamé-mode resonator. For a 
CMOS-MEMS multilayer resonator, all the variables nec-
essary to evaluate (1) have been derived.

In contrast to the pure oxide plate, mat.1 and mat.2 
plates offer great design flexibility in terms of position and 
number of embedded compensating blocks. The analytical 
mode offers a quick way to independently tune each plate 

to achieve the overall thermal stability of the multilayer 
structure. This method offers an efficient and intuitive 
method for coarse tuning of the multilayer structures to 
achieve a small TCF. Table IV lists the design after coarse 
tuning. The material configuration, room temperature 
resonant frequency and TCF for each type of plate are 
included. Because the goal is to achieve highly thermally 
stable resonator with sub-ppm TCF, the semi-analytical 
approach is used to calculate the TCF of each individual 
layer to reduce approximation error. In spite of this, there 
will still be error involved in deriving the multilayer TCF 
based on each individual layer. Consequently, this ap-
proach works best for coarse tuning to get the TCF to a 
reasonably small value: 3.04 ppm/K for this design.

As a next step, fine tuning is required to achieve sub-
ppm temperature stability. For a given multilayer mate-
rial configuration, its TCF can be derived by simply per-
forming one single eigenfrequency simulation on the entire 
structure to calculate the mode shape of the composite 
material resonator and then use (36) to derive the overall 
TCF. This method fits better for fine tuning the mate-
rial embedding to achieve sub-ppm TCF. Intuition gained 
from the previous step can help in determining where to 
embed more compensating material or which block to take 
out. Using this method, the first-order TCF is improved to 
−0.22 ppm/K, a level within the design requirement. The 
design is shown in Table V. There is a slight modification 
in the mat.1 plate after fine tuning. As a validation, FEM 
simulation predicts a first-order TCF of −0.28 ppm/K at 
room temperature on the final design, matching closely 
to the analytical model. As can be seen from Fig. 12, fre-
quency shift becomes mostly a quadratic function of the 
temperature after the linear TCF has been successfully 
compensated. The second order TCF is −0.007 ppm/K2. 

Fig. 8. Oxide-based single layer TCF due to a single block metal embed-
ded at different locations in the Lamé mode resonator. (a) FEM, (b) 
analytical model.

Fig. 9. (a) Difference in ppm/K, and (b) percentage error in TCF be-
tween the FEM simulation and the analytical model, and the percentage 
error, when a single metal compensating block is placed at different loca-
tions on the oxide plate.

TABLE II. TCF of a Single-Layer Oxide Plate Due to Metal 
Embedding at Multiple Locations.

TCF FEM 
(ppm/K)

39.59 −11.76 −79.37 −58.25 −103.28

TCF analytical  
model (ppm/K)

37.47 −15.53 −88.80 −65.48 −118.47

Error (%) 5.4 32.1 11.9 12.4 14.7

Fig. 10. Oxide-based single layer TCF due to single metal embedding at 
different test locations. (a) FEM, (b) Analytical model.
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In general, after coarse tuning only a few fine tuning steps 
are required to further reduce the TCF to sub-ppm level.

Finally, anchor beams, Tungsten electrodes, and oxide 
edge for etching protection are added to fully represent a 
real device. The above design can be re-tuned to achieve 
a TCF of −0.21 ppm/K, according to FEM simulation, 
after adding all these extra elements. The final design is 
shown in Table VI.

IV. Application in Numerical  
Simulation Packages

As demonstrated in the previous section, the analytical 
model provides a way to efficiently predict and simulate 
the first-order TCF of a composite resonant structure. In 
general, this model can be applied in two different sce-
narios.

In the case where structures for which eigenmode simu-
lation is easy, first-order TCF can be calculated by per-
forming two eigenmode simulations at two nearby temper-
atures, respectively, and calculating the fractional change 
between the two eigenfrequencies per unit degree of tem-
perature change. In this case, the aforementioned analyti-
cal model can simplify the calculation to only one single 
eigenmode simulation. Furthermore, this model allows the 
designer to use the unperturbed mode shape and get real-
time update of an estimated TCF while moving the tem-
perature compensating blocks to different locations inside 

the structure to coarse tune the thermal stability. This 
allows for intuitive and interactive design experience when 
integrated within numerical simulation packages.

The second case is when designers are trying to pre-
dict the TCF of a resonant structure, but it is difficult to 
perform the eigenmode simulation of that structure. Such 
a challenge is common for unreleased structures, such as 
unreleased CMOS-MEMS resonators [34], SAW resona-
tors [35], and resonators that are anchored on the entire 
perimeter, for example, a phononic crystal resonator [36]. 
In such cases, the analytical model becomes particular-
ly useful because it only requires an approximate mode 
shape, and thus no time-consuming frequency sweep is 
required to accurately resolve the resonant frequency and 
resonant mode. The designer can first perform a coarse 
frequency sweep around the resonance and pick a displace-
ment field at a frequency close to the resonance. The TCF 
formula (36) needs slight modification in this case, be-
cause the kinetic energy and strain energy are not equal at 
off-resonance frequencies. The expression for TCF using 
off-resonance field is

	 TCF
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where T′0 and U′0 are stress field and total strain energy 
evaluated near the resonance, but not at the exact reso-
nance frequency.

Fig. 11. (a) Difference in ppm/K and (b) percentage error in TCF be-
tween the FEM simulation and the analytical model, when the com-
pensating block is placed at different locations in the test structure. 
Increased accuracy is demonstrated in comparison with Fig. 9, for an 
unperturbed mode shape based on FEM simulation (semi-analytical ap-
proach).

TABLE IV. Temporary Design After Coarse Tuning.

Embedding 
configuration

Resonant  
frequency  
(MHz)

TCF  
(ppm/K)

Number  
of plates

Plate  
height  
(µm)

Effective  
density  
(kg/m3)

Oxide 56.81 92.50 5 0.85 2200.00

mat.1 
metal 
with 
oxide

49.50 −286.53 2 0.53 2561.57

mat.2 
oxide 
with 
metal

52.86 −106.41 2 0.53 2384.89

Predicted TCF is 3.04 ppm/K according to (1).

Fig. 12. Frequency shift vs temperature after the fine tuning. Quadratic 
dependency is dominant, showing good first-order TCF compensation.

TABLE III. TCF of a Single-Layer Oxide Plate Due  
to Metal Embedded at Multiple Locations Using  

the Semi-Analytical Approach.

TCF FEM  
(ppm/K)

39.59 −11.76 −79.37 −58.25 −103.28

TCF analytical  
model (ppm/K)

40.15 −10.86 −78.37 −57.23 −102.34

Error (%) 1.4 7.7 1.3 1.8 0.9
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Fig. 13 shows the TCF calculated using the analytical 
model, based on the displacement field at various frequen-
cies close to the resonance. Both the modified formulation 
and the unmodified formulation deviate from the TCF 
obtained from FEM simulation, due to the error inherent 
in the first-order perturbation theory when the perturba-
tion is no longer infinitesimally small. But as can be seen, 
the modified formulation that uses strain energy in the 
denominator gives better consistency compared with the 
unmodified formulation that uses kinetic energy in the de-
nominator. Even when the frequency is relatively far from 
the resonance, the predicted TCF based on the off-reso-
nance displacement field is still close to that predicted us-
ing the resonant mode shape. Consequently this analytical 
model remains robust even if the off-resonance displace-
ment field is used, and thus can save tremendous simula-
tion time when used to predict the TCF of a high-quality 
factor resonator, where a brute force frequency sweep ne-
cessitates fine steps to resolve the resonance peak, making 
the computation costly and time consuming.

V. Conclusion

In this work, a CMOS-MEMS resonator design in 0.18 
µm 1-poly-6-metal standard CMOS process that uses em-
bedded metal block for temperature compensation is pro-
posed and shows sub-ppm temperature stability (−0.21 
ppm/K). A comprehensive analytical model is derived 
and applied to analyze and optimize the TCF of CMOS-
MEMS composite material resonators. Comparison with 
FEM simulation demonstrates good accuracy. The model 
can also be applied to predict and analyze the TCF of 
MEMS resonators with arbitrary mode shape, and its in-
tegration with simulation packages can enable an interac-
tive and efficient design process.

Appendix A  
TCF of the Multilayer Structure as a 
Combination of the Single-Layer TCFs

The overall resonance frequency of the multilayer 
CMOS-MEMS resonator can be written as the linear com-
bination of the resonance frequency of each single-layer 
plate [37]:
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Taking the derivative of (51) with respect to tempera-
ture t and dividing both sides by 2 2ftotal led to

	
1

=
1

1

.1

2

.21 1

f
f
t

A B Cf
f
t f

f
t f

total

total mat.

mat

mat.

mat
∂
∂

⋅ + ⋅ +
∂
∂

∂
∂ ooxide

oxide∂
∂

+ +

f
t

A B C ,		

		  (52)

where

	 A h f= 2
mat.1 mat.1 mat.1ρ ,	 (53)

	 B h f= 2
mat.2 mat.2 mat.2ρ ,	 (54)

	 C h f= 2
ox ox oxρ .	 (55)

ρmat is the effective density of that plate, which can be 
calculated using the average density in the plate weighted 
by the local displacement squared:
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From this the expression of the TCF of a multilayer struc-
ture can be derived:

	 TCF
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TABLE V. CMOS-MEMS Resonator Design That Achieves a 
Sub-ppm First-Order TCF of −0.28 ppm/K.

Oxide mat.1 
metal 
with 
oxide

mat.2 
oxide 
with 
metal

TABLE VI. Final Design Achieves −0.21 ppm/K TCF.

Oxide mat.1 
metal 
with 
oxide

mat.2 
oxide 
with 
metal

Anchor beam, Tungsten electrodes, and oxide edge for etching 
protection have all been considered.

Fig. 13. TCF from analytical model, using off-resonance mode shapes 
evaluated at different frequencies near the resonance. The inset shows 
the structure, based on which the simulation is done. The modified for-
mula uses strain energy in the denominator as in (50), whereas the un-
modified formula uses kinetic energy in the denominator as in (37).
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Appendix B  
Property of Strain Displacement Operator ∇s 

and Divergence Operator ∇∙

The results to be proved are the following:

	 〈∇ 〉 〈− ∇ ⋅ 〉su T u T| = | ,	 (58)

	 T u T u| = |∇ 〈−∇ ⋅ 〉s .	 (59)

Here, u is the displacement field, T is the stress field, and 
operator ∇∙ and ∇s are defined in Section II of this paper. 
Because these two identities are equivalent, only the proof 
for the first one is provided.

The right hand side of (58), without the minus sign, 
can be written as
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Using the vector identity

	 div div grad( ) = ( ) ( )ψ ψ ψ
� � �
A A A⋅ + ⋅ ,	 (61)

where 
�
A is a vector field and ψ is a scalar field, the above 

equations can be rewritten as
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Then Gauss’s law is applied to the divergence terms to 
change the volume integrals into surface integrals, where 
∂Ω denotes the surface of Ω.
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For a freely suspended resonator of finite size, the surface 
integrals are zero because stress along the surface normal �
n  has be to zero at a free boundary. For an unreleased 
resonator or a resonator anchored on the entire perimeter, 
the mode is localized [36] and the domain surface ∂Ω can 
be extended to infinity, where the stress and strain field 
are infinitesimally small. The surface integral also goes to 
zero in this scenario. Thus,
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As for the left-hand side,
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It can be further simplified into the following form:
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Now it becomes obvious that

	 〈∇ 〉 −〈 ∇ ⋅ 〉su T u T| = | .	 (67)
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Appendix C  
Hermiticity of Â and B̂

B̂ = ρ, thus it is trivial to show that B̂ is Hermitian 
because ρ is real and consequently

	 〈 〉 〈 〉ρ ρu u u u| = | .	 (68)

As for Â = −∇∙c : ∇s, proving it is hermitian requires 
applying the conclusion from Appendix B twice. First, the 
divergence operator ∇∙ is moved to the left side of the in-
ner product:

	 〈 〉 〈 −∇ ⋅ ∇ 〉 〈∇ ∇ 〉u Au u c u u c u| = | : = | :ˆ .s s s 	 (69)

Then the stiffness matrix c and operator ∇s are moved to 
the left side:

	 〈 〉 〈∇ ⋅ ∇ 〉 〈−∇ ⋅ ∇ 〉u Au u c u c u u| = | : = : |ˆ .s s s 	 (70)

This proves Â = −∇∙c : ∇s is also a Hermitian operator.
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