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Abstract— An innovative process of integrating microneedle
array with carbon nanotube (CNT) nanofilters is developed
for a novel transdermal drug delivery device with nanometer-
scale selectivity and control mechanism. The SU-8 micronee-
dle array is fabricated by the double drawing lithography
process. This microneedle array is capable of penetrating
stratum corneum (SC) layer. Then, drug molecules can selec-
tively pass through CNT nanofilters with the aid of pres-
sure, or an electric field, and are effectively delivered into
the tissues under the SC layer. The CNT bundles integrated
within the microneedle array act as nanofilters to block par-
ticles and molecules larger than the inner diameter of the
CNTs. Moreover, the CNT nanofilters can selectively con-
trol the delivered drugs when they are under various elec-
tric fields. Three kinds of biomolecules, e.g., glucose, insulin,
and hemagglutininare are investigated. The results demonstrate
that the proposed novel transdermal drug delivery device
can effectively deliver drug molecules in a selectively control
mechanism. [2013-0366]

Index Terms— Microneedle array, double drawing lithography,
carbon nanotube (CNT) nanofilters, controlled and selective drug
delivery.

I. INTRODUCTION

ICRONEEDLES for transdermal drug delivery are

promising devices to replace traditional hypodermic
needles due to their minimally invasive procedure. There is
a promising possibility for self-administration with a low risk
of injuries [1]. It is more effective for pharmaceutical and
therapeutic agents to be transported into the body via skin.
Previously, various microneedles devices for transdermal drug
delivery applications have been reported. They have been
successfully fabricated by different materials and methods
[2]-[24]. But none of them have integrated functions for
controlled drug release with mechanical valves such as CNT
nanofilters. Such a drug control releasing function is desirable
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for long term drug delivery and could expand the applications
of microneedles. In this study, an innovative process to make
SU-8 microneedles integrated with SU-8 sharp tips and vertical
grown Carbon nanotubes (CNTs) bundles is developed. The
CNT bundles are embedded within the SU-8 microneedles
as the function of nanofilters. Nowadays the tubular structure
of CNTs is a hot topic for mass transport. Gas, liquid and
bimolecular have been proven to be capable of passing through
the inner channel of CNTs [25]-[46]. Moreover, by using
the unique property of nano-scale inner channels and the out
surface which is easy to be modified, selective transport has
been realized by surface modification [45], size exclusion [26]
and DEP force alignment [46], showing the feasibility of
using vertical aligned CNT forest as nanofilters for selective
transport of drug molecules. Such nanofilters could realize the
function of controlled selective drug release. The delivery of
drugs of different molecular dimensions could be controlled
by pressure and an electric field. In this study, a mixture
of glucose and Hemagglutinin is used to demonstrate the
function of selective drug delivery. Glucose and insulin of low
molecular weight could pass through CNTs just by applying
pressure. And due to the insulin molecules in solution are
positively charged, the transport rate through CNT nanofilters
could be tuned by electric field. Hemagglutinin, a kind of
cylindrical molecule close to the inner diameter of the CNT
inner channel, could pass through CNTs by applying electric
field and pressure simultaneously [46], while glucose could
be delivered when only pressure is applied. In the case that
both pressure and electric field are given, both glucose and
Hemagglutinin could be delivered.

The design of the microneedle array integrated with CNT
nanofilters is shown in Fig. 1. An array of SU-8 microneedles
was patterned above a SU-8 membrane(Fig. 1(a)). Every SU-8
microneedle has two parts: four-beam sidewalls at the bottom
and a sharp tip at top as shown in Fig. 1(c). The four-beam
sidewalls (brown parts in Fig. 1(a)) are patterned by photo
lithography. The gaps along the sidewalls are the outlets of the
microneedles. The sharp tips above the four-beam structure
(green parts in Fig. 1(a)) are assembled and patterned by
double drawing lithography. Above them, a layer of gold
surface electrode was deposited onto the whole surface. This
surface electrode allows us to apply an electric field in the
test. Inside the four-beam structures, vertical grown CNT
bundles (black parts in Fig. 1(a)) were embedded in the
SU-8 membrane to form the CNT nanofilters. Fig. 1(d) shows
the SEM image of one CNT bundle. Underneath the SU-8
membrane, there a SU-8 chamber layer to support the SU-8
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Fig. 1. 3D schematic drawing of the microneedle device integrated with
CNT nanofilters; (b) Optical image of the microneedle array with gold
surface electrode, scale bar is 1000 xm; (c) SEM image of single SU-8
microneedle with four-beam sidewalls and a sharp tip, scale bar is 80 um;
(d) SEM picture of a CNT bundle embedded inside the microneedle, scale bar
is 10 um.
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Fig. 2. Working principle of the microneedle array integrated with CNT
nanofilters for transdermal drug delivery.

membrane layer and form a solution chamber. PDMS layers
(the blue part in Fig. 1(a)) are bonded to the SU-8 chamber
layer for tube connection in the test. Solution could be loaded
in the chamber under the CNT bundles, pass through the CNT
bundles and finally through the SU-8 microneedles into the
tissue.

The optical image of the microneedle array with the gold
surface electrode is shown in Fig. 1(b). For applying the
electric field across the CNT nanofilters in the test, one
electrode will be bonded onto the surface electrode and another
electrode will be inserted into the PDMS chamber as shown
in Fig. 2. When the solution is loaded in the drug reservoir
and flow through the CNT nanofilters, two electrodes would
be connected by the solution and an electric field is generated
across the CNT nanofilters.
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II. DEVICE FABRICATION AND CHARACTERIZATION

A. Fabrication Process

Fig. 3 illustrates the fabrication process. The process began
with thermal oxidation of single crystal silicon substrate to
form a etch stop oxide layer. After the CVD of polycrystalline
silicon as a sacrificial layer, a 5 nm thickness of Fe film, which
acted as the catalyst film for the selective growth of CNTs, was
patterned onto the silicon substrate (Fig. 3(a)). As illustrated
in Fig. 3(b), the vertical aligned CNT bundles of 50 xm in
height were grown via pyrolysis of acetylene at 800 °C with
an Ar/NH3 flow for 15 min. As illustrated in Fig. 3(c), the
CVD parylene-C was employed to fill into vertically aligned
CNTs and then to reinforce the inter-tube binding at room
temperature. Thus, the top side of CNTs was covered with
parylene-C, and the discrete CNTs were bound together by
parylene-C as show in Fig. 4(a). This step was the most
critical process for forming the mechanical supporting layer
for CNT bundles. The thickness of the flexible parylene-C
layer was determined by the CVD process. To achieve reliable
mechanical strength for the following process, a 10 #m thick
parylene layer was deployed. The parylene layer was peeled
off together with CNT bundles from the substrate. As shown
in Fig. 3(d), the parylene film was attached onto a thin glass
slide. Then a layer of 50 um SU-8 was deposited onto the
parylene layer. The thickness of this SU-8 layer was the same
as the height of CNT bundles. Due to the transparency of the
glass slide and parylene layer, the SU-8 layer was exposed
from the back side of the glass slide. The catalyst layer under
the CNT bundles could act as mask in this lithography step.
The SU-8 above the CNT bundles would not be exposed.
After development of SU-8, the parylene top of CNT bundles
would not be covered by SU-8 as shown in Fig. 3(e) and
Fig. 4(b). Such a SU-8 layer deposited above the parylene
layer could act as hard mask for plasma etching. The sealed
parylene top of CNT bundles could be etched by oxygen
plasma as shown in Fig. 3(f) and Fig. 4(c). Then release
the parylene layer together with the SU-8 cover layer from
the glass slide and bonded onto an unexposed SU-8 layer
deposited on another thin glass slide as shown in Fig. 3(g). In
this process, a layer of SU-8 was spin coated and pre-baked
on a thin glass slide first. After cooling, attach the released
parylene layer onto the SUS layer then re-bake the SU-8 layer
to make it molten. After cooling, a good bonding was formed
between the parylene layer and the SU-8 layer. Expose the
sample from the backside of the glass slide to form a drug
reservoir under the parylene layer as shown in Fig. 3(h). The
size of the drug reservoir should be slightly larger than the
dimension of the CNT bundle array. Etch off the catalyst layer
at the backside of CNT bundles by oxygen plasma and bond
it with a thin PDMS layer as shown in Fig. 3(i). For the
bonding between PDMS and SU-8, the PDMS layer should
be treated with nitrogen plasma then be attached onto the
SU-8 layer and baked at 120 °C for 30 minutes. Then a
30 um thick SU-8 membrane was patterned on the front layer
of sample as shown in Fig. 3(j) to reinforce the structure.
On this membrane layer, holes aligned with the CNT bundle
array were patterned. As shown in Fig. 3(k), array of SU-8
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Fig. 3. Fabrication process for microneedle array integrated with CNT nanofilters: (a) Pattern Fe catalyst layer; (b) Grow vertical CNT bundles; (c) Reinforce
the CNT with parylene and dry release; (d) Attach the released sample onto a glass slide; (e) Deposit a layer of SU-8 and expose from backside; (f) Dry
release the sample from glass slide; (g) Bond the release sample onto an unexposed SU-8 deposited on a glass slide; (h) Expose from backside to form
the drug reservoir; (i) Bond a thin PDMS layer with a large central hole at the backside of the sample; (j) Pattern a SU-8 membrane layer to reinforce the
sample; (k) Pattern a SU-8 four-beam array aligned to the CNT bundle array; (1) Bond a thick PDMS layer with a central hole at the backside; (m) Assemble
the microneedle array by double drawing lithography; (n)deposit a gold layer onto the whole surface by thermal evaporation; (o) Detailed structure of single

microneedle integrated with CNT nanofilters.

Fig. 4. (a) CNT bundle coated with parylene, the scale bar is 10 gm; (b) CNT
bundle with parylene top embedded in SU-8 layer, the scale bar is 10 um;
(c) CNT bundle embedded in SU-8 layer after oxygen plasma etching, the
scale bar is 10 gm.

four-beam sidewalls array was further aligned and patterned
above the membrane layer. As shown in Fig. 3(i), a thick
PDMS layer with a center hole was bonded at the backside.
This PDMS layer was used for tubing purpose. The center
hole was for the insertion of the tube. Then SU-8 sharp tips

were assembled onto the four-beam sidewalls array by double
drawing lithography as shown in Fig. 3(m). Finally, a gold
surface electrode was deposited onto the whole surface by
evaporation as shown in Fig. 3(n). The detailed structure of a
single microneedle integrated with a CNT nanofilter is shown
in Fig. 3(0).

B. Characterization of CNT Nanofilters

In the fabrication process, the both ends of CNT bundle
need to be opened by oxygen plasma. Initially the bottom end
of CNT bundle is sealed by Fe catalyst layer. Fig 5(a) shows
the exposed CNTs at the bottom side after oxygen plasma
treatment. Due to the property of parylene deposited by CVD,
there is no parylene at the central bottom area of the CNT
bundles. Fig 5(b) shows the detailed image of the exposed
CNTs at the bottom end of a CNT bundle after oxygen plasma
etching. There is no parylene between the CNTs.
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Fig. 5. (a) Backside of the CNT bundle. The catalyst layer is etched by
oxygen plasma. The scale bar is 10 um. (b) The detailed image of the backside
exposed CNTs. The scale bar is 2 um. (c) Top of the CNT bundle with
proper etching dose. The scale bar is 20 xm. (d) The detailed image of the
top exposed CNT. The scale bar is 2 um. (e) Top of the CNT bundle with
over etching dose. The scale bar is 20 xgm. (f) After applying a air pressure,
the CNT bundle within the parylene sidewall is blown away. The scale bar is
20 pum.

In the process of etching the top parylene layer, the proper
dose of oxygen plasma is critical to make the CNTs exposed.
Fig 5(c) shows the top of CNT bundle with the proper dose
of oxygen plasma. Fig 5(d) shows the detailed image of
the exposed CNTs. In the images, tops of individual CNTs
could be seen embedded within the parylene reinforcement.
No cracks between CNT and parylene were observed. The
SU-8 layer around the CNT bundle was very rough after
the oxygen plasma etching. Fig 5(e) shows the CNT bundles
with the over dose oxygen plasma treatment. The CNTs were
fully exposed and the parylene between CNTs are totally
etched off. The connection between CNT bundles and parylene
sidewalls became very weak. By applying a air pressure from
the backside, the whole CNT bundle would be blown away as
shown in Fig 5(f). To ensure the CNT bundles are etched with
the proper dose of oxygen plasma, the whole etching process
was divided into several cycles. The samples were checked
by SEM after every cycle until only the tops of CNTs were
exposed as shown in Fig 5(d).

C. Double Drawing Lithography to Assemble Microneedles
Upon CNT Nanofilters

In our previous work [47], we used one time stepwise
controlled drawing lithography technology for the maltose
sharp tips integration. The maltose sharp tips were assembled
onto hollow SU-8 tubes. We tried using the same drawing
lithography process to assemble SU-8 sharp tips.
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Fig. 7. (a)-(c) Results of single drawing lithography of 50 #m, 100 xm and
170 pm insertion depth; (d)-(f) Results of double drawing lithography of 10s,
30s and 60s baking time.

The process for drawing lithography is shown in Fig 6(a).
A pre-baked SU-8 layer was prepared on Si substrate. Then
mount the sample above the SU-8 layer and bake the
SU-8 layer to make it molten as shown in step (I). Then insert
the pillar into the molten SU-8 layer to a depth d as shown
in step (II). Draw out the pillar from the molten SU-8 layer.
Some Su-8 will attach onto the top of pillar and a Su-8 bridge
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will be formed between the molten SU-8 layer and pillar as
shown in step (III). Further draw out the pillar to break the
SU-8 bridge and form the sharp tip as shown in step (IV).

However, the conventional drawing process can only make
a hollow tip but not a solid tip structure (Fig. 7(a)—(c)). This
is due to that the frame used to conduct drawing process is
a four-beam structure which is different from a microtube.
We changed the insertion depth d during the drawing process
from 50 um to 170 gm. This kind of tip was fragile and
could not penetrate skin in practical testing process. And no
matter how deep we inserted the four-beam structure into
the molten SU-8 layer, the SU-8 always only attached onto
the top of pillars. To solve the problem, we developed an
innovative double step drawing lithography process as shown
in Fig 6(b). We conducted first time stepwise controlled
drawing lithography and got hollowed tips as shown in step (I).
Then the whole device was baked in an oven at 120 °C to melt
the hollowed SU-8 tips as shown in step (II). Molten SU-8
flowed into the gaps between four-beam sidewalls and the tips
became domes. Then a second drawing process was conducted
on the top of molten SU-8 to form sharp and solid tips as
shown in step (III) and step (IV). The flowing depth t of the
molten SU-8 in the gaps could be controlled by changing the
baking time in the reflow step. The SU-8 just molten without
flowing the gaps for 10s baking time (Fig. 7(d)). The SU-8
would be reflowed into the gap and block more than half of
the gap for 30s baking time (Fig. 7(e)). The gap would be
totally blocked with 60s baking time (Fig. 7(f)). In our chip
fabrication, we just choose 10s baking time to have the gaps
not blocked.

III. EXPERIMENT RESULTS AND DISCUSSION
A. Penetration Test

Penetration tests on mouse cadaver skin were conducted to
characterize the penetration capability of the SU-8 micronee-
dles made by double drawing lithography. 10 microneedles
devices were tested and no breakage was observed during the
penetration. A histology image of the skin at the site of one
microneedle penetration confirms that the sharp conical tip was
not broken during the insertion steps. It also shows evidence
of the penetration as the similar hole shape with sharp conical
tip (Fig. 8).

B. Nanoparticles Blockage Test

By having the CNT nanofilters, nano-scale substance whose
dimension is larger than the inner diameter of the CNT nan-
otube should be blocked. However, micro-scale and nano-scale
cracks may occur in the parylene reinforced CNT bundles
which will cause the device failure. It is necessary to verify
there is no crack in the CNT nanofilters device. Due to that
the whole device is made of polymer which is not suitable for
TEM imaging, we leveraged fluorescent nanobeads to confirm
whether the samples were crack free or not in this study.

Texas red (Sigma Aldrich, Singapore) whose molecular
weight is 606.71 and fluorescent nanobead (Sigma Aldrich,
Singapore) whose dimension is 80nm were mixed and deliv-
ered into the mouse skin by the microneedle devices with and
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Fig. 9. Fluorescent images of mouse skin: (a) Texas red and nano-fluorescent
beads are delivered with microneedle device without CNT nanofilters;
(b) Texas red and nano-fluorescent beads are delivered with microneedle
device with CNT nanofilters; (c) The micrometer scale gaps occur between
skin and bottom edge of a microneedle due to skin deformation.

without CNT nanofilters. The fluorescent images are shown in
Fig. 9. For the device without CNT nanofilters, both Texas red
and fluorescent nanobeads are delivered into skin as shown in
Fig. 9 (a). The color of the mixed fluorescent is violet. For
the device with CNT nanofilters, the skin shows red color
rather than violet as shown in Fig 9 (b), which indicates
only Texas red is delivered and fluorescent nanobeads are
blocked. The results confirm that the CNT nanofilters could
block nanobeads and there was no nano-scale crack in the
CNT nanofilters. On the other hand, it has been reported that
out-of-plane microneedles are not able to be inserted entirely
into the skin [6], [48], [49]. During the process of delivering
drug into the skin, we found that there were micrometer
scale tiny gaps between bottom edge of each microneedle
and skin surface due to the skin deformation as depicted in
Fig. 9 (c). The skin around the edge of microneedle sidewall
is in concave shape and it leaves a tiny gap at bottom part
of microneedles. To investigate efficacy of microneedles in
delivering drug even with the existence of these micrometer
scale gaps, hydrogel absorption experiments were conducted
to quantify the delivery rate and the relation between pressure
and transport rate of drugs.

C. In Vitro Drug Delivery Test

Gelatin hydrogel was prepared by boiling 70 mL DI (Deion-
ized) water and mixing it with 7g of gelatin powder (KnoxTM
original unflavored). After cooling down, the solution was
poured into a petri dish to 1cm high. Then the petri dish was
put into a fridge for half an hour. The Gelatin solution became
collagen slabs. The collagen slabs were cut into 6 mmx6 mm
sections. A piece of fully stretched Parafilm (Parafilm M,
USA) was tightly mounted on the surface of the collagen
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Fig. 11. Glucose delivery quantity as a function of pressure.

slabs. This parafilm was used here to block further diffusion of
leaked solution into the collagen slab in the delivery process.
Then the microneedles penetrated the parafilm and went into
the collagen slab as shown in Fig 10. The drug could be
delivered through microneedles and absorbed by the hydrogel.

In the test of glucose delivery, glucose solution was deliv-
ered into the collagen slab under different pressure and
duration. Then the collagen slabs were digested in 1mg/mL
collagenase (Sigma Aldrich, Singapore) at room temperature.
It took around 1h for all the collagen slabs to be fully
digested. The solution was collected to measure the glucose
concentration with Glucose Detection kit (Abcam, Singapore).
By comparing the readings from the kit with the measured
concentration standard curve [52], the concentration of the
glucose in hydrogel was measured. According to the glucose
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Fig. 12.  Insulin delivery test result: (a) IR spectra of insulin by applying

different pressure; (b) The peak value of IR spectra by applying different
pressure and bias of electric field.

concentration, the absorption rate and solution delivery rate of
the glucose in the hydrogel were calculated.

Fig. 11 shows that the transport rate of glucose is propor-
tional to the given pressure and the duration of the tests.
When the pressure is lower than 1 kPa, no glucose could
be detected. It indicates that the CNT nanofilters could be
used as a pressure valve for the delivery of glucose. The
delivery rate is around 70% for all the test data. It means
around 30% of the drug would leak to the surface. More
importantly, after the pathways are created through the stratum
corneum layer by microneedles, the drug which leaked to the
skin surface eventually diffused into a deeper layer under the
stratum corneum layer [50].

We conducted the same hydrogel absorption experiment for
insulin. Insulin is a peptide hormone and central for regulating
carbohydrate and fat metabolism in the body. Due to the
poor absorption or enzymatic degradation of insulin in the
gastrointestinal tract and liver, the transdermal delivery has
been so far the preferred method of insulin administration. The
molecular radius of insulin is 1.34nm [53] which is smaller
than the inner diameter of the CNTs in the device. It could
pass through the CNTs just by applying pressure. Since the
insulin molecules are positively charged in the solution, the
transport rate could be tuned by applying electric field.

The insulin solution of 1mg/ml concentration was preloaded
in the drug reservoir. Air pressure levels in the range from
5kPa to 20kPa were applied for 30mins. The resultant solution
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Fig. 13. IR spectra of Hemagglutinin by applying different pressure.
samples were analyzed by FTIR as shown in Fig 12(a).
The peak value indicates the concentration of insulin in the
sampled solutions. From the test results, the concentration of
insulin is proportional to the pressure level which means the
transport rate of insulin through CNTs is linear to the pressure
level.

Then the test was repeated by applying bias ranges from
—10V to 410V and air pressure ranges from SkPa to 20kPa.
The peak value of IR spectra at 4.7 um wavelength was
recorded in Fig 12(b). The positive bias could facilitate the
transport of insulin and negative bias could decrease the trans-
port rate. For the line of —7.5V and —10V, when the pressure
was lower than 10kPa, the IR spectra at 4.7 um wavelength
was lower than the noise level thus no insulin was detected.
This result indicates that the CNT nanofilters could be used
as both pressure valve and electric switch for the delivery of
insulin. And a sufficient reverse bias could balance the air
pressure, realizing a zero delivery of insulin.

Hemagglutinin is a type of antibody that agglutinates
red blood cells. It is a cylindrical molecule whose lon-
gitudinal dimension and diameter are is 13.5 and 6.5nm,
respectively [51]. Because the length of the molecule, 13.5nm,
is larger than the inner diameter of the CNT nanotubes,
10nm, the Hemagglutinin cannot pass through the CNT just
by applying pressure.

According to our previous study [46], Hemagglutinin can
pass through the CNTs when both electric field and pressure
are applied together. This is because the cylindrical molecule
can be aligned by the DEP force.

In the test, we applied 5V bias for 1 hour. The pressure
changes from 5kPa to 20kPa. The sample solution was ana-
lyzed with FTIR. The IR spectra were shown in Fig. 13. Due
to that we used a water based solution as background for
FTIR analysis, some negative peaks occurred in the spectra
meaning the absorption was lower than water at that wave-
length. The peak value was not in proportion to the pressure
which indicates that the transport rate of large molecules
is not proportional to the pressure. No heamagglutinin was
detected when no electric field was applied. Therefore, the
CNT nanofilters could act as a electric switch for the delivery
of heamagglutinin.
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The transport conditions of glucose and Hemagglutinin
through CNT nanofilters are different. So if glucose and
Hemagglutinin are mixed together, a selective transport could
be realized by controlling the pressure and electric field
applied. Then we mixed the glucose and Hemagglutinin
together and conducted the test again. In one test, only 20kPa
pressure was applied. In another test 5V bias and 20kPa
pressure were applied. The durations of both tests were one
hour. The IR spectra were shown in Fig. 14. The green line
is the reference of Hemagglutinin and the brown line is the
reference of glucose. For Hemagglutinin, there is a negative
peak at 3.5 um. For glucose, there is a positive peak at 4.3 ym.
When only pressure was applied, only glucose was detected.
The blue line shows the similar curve as the brown line
without the negative peak at 3.5 ym. When both pressure and
electric field were applied, both Hemagglutinin and glucose
could be detected. The red line indicates both the negative
peak at 3.5 um. and positive peak at 4.3 um. This result
confirms that by controlling the conditions, Hemagglutinin
could be selectively delivered while glucose could always be
delivered.

IV. CONCLUSION

A microneedle array integrated with CNT nanofilters for
realization of controlled and selective drug delivery has been
reported. The SU-8 tips made by the double drawing litho-
graphy process are sharp and stiff enough to penetrate skin.
Nanobeads of 80 nm diameter were blocked in the test. It
indicates there were no nano-scale cracks in the device and the
CNT nanofilters could block all substance larger than its inner
diameter. The device could be used for controlled selective
transdermal drug delivery. The transport rate of glucose and
insulin of low molecular weight is proportional to the pressure
given. But the transport rate of Hemagglutinin, i.e., a large
molecule, is not in proportion to the pressure. The transport
rate of charged molecule such as insulin could be tuned by an
electric field. For the molecule which could be aligned by DEP
force to pass through the CNT inner channel, CNT nanofilters
could be used as an electrical switch. When the molecule
is much smaller than the inner diameter of the CNTs, CNT
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nanofilters could be used as a pressure valve. The function
of drug administration could be implemented by having the
CNT nanofilters in microneedle array. It could expand the
application of microneedles for a long term automatically
disease monitoring and drug delivery system.
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