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Design of a Digitized Vibration Detector
Implemented by CMOS Digitized Capacitive
Transducer With In-Plane SoI Accelerometer
Cheng-Ta Chiang, Senior Member, IEEE, Chun-I Chang, and Weileun Fang, Senior Member, IEEE

Abstract— In this paper, a digitized vibration detector
implemented by CMOS digitized capacitive transducer with
in-plane silicon-on-insulator (SoI) accelerometer is newly pro-
posed. The proposed digitized vibration detector is attractive due
to the fact that all the circuits and the sensor can be robustly
and compactly combined together. A total solution including
the continuous-time-voltage (CTV) analog sensing circuits and
digitalized interface are proposed in this paper. Based upon
0.35-µm 2P4M CMOS technology with 3 V power supply, all
the functions and performance of the proposed CMOS digitized
capacitive transducer are successfully tested and proven through
measurements and confirmed it to be applied on the in-plane
SoI accelerometer. The sensitivity of the proposed CTV analog
sensing circuits is 50.488 mV/g and maximum nonlinearity is
2.5% over the excitation of 0.25–5.75-g intensity. The peak signal-
to-noise-plus-distortion ratio of the proposed digitized vibration
detector is 67.6 dB under excitation of 3.25-g intensity. The
proposed digitized vibration detector is suitable for digitized
accelerometer applications, such as automobiles, consumer elec-
tronics, Wii game player, and so on.

Index Terms— Sensor interface, accelerometer, sensor trans-
ducer, CMOS, capacitive sensor.

I. INTRODUCTION

NOWADAYS, MEMS (Micro Electro Mechanical Sys-
tems) accelerometers play an increasing role in appli-

cations as automobiles, navigation, vibration monitoring, and
portable consumer electronics. Thus, the commercial market of
accelerometers is rapidly increased. Presently, there are various
accelerator designs have been reported, such as capacitance
[1]–[11], piezoresistive [12], piezoelectric [13], [14], optics
[15], and tunneling [16] types. For the accelerators, the cor-
responding readout circuits are also important. By following
the characteristics of accelerators, readout circuits can be
grouped into piezoelectric, piezoresistive, capacitive types,
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and etc. Among them, capacitive interfaces have the advan-
tage of easily being integrated with CMOS MEMS sensors.
Previous achievements related to the interface of capacitive
accelerometers [17]–[32] had been demonstrated. However,
sensing methods of these circuit structures are different.
[17]–[22] are based on continuous-time-voltage sensing tech-
nique, and [23]–[32] are followed by switch-capacitor (SC)
charge integration. Comparing these two sensing methods, the
CTV sensing technique has the lower noise floor than SC
charge integration [18]. Thus, analog sensing circuits of this
work are wholly developed by following the CTV method. In
order to consider for commercial market, a digitized output
feature is also needed. The digitized output should be a bit
stream, it could thus be easily sent over a wide range of
transmission media, such as PSN, radio, optical, IR, ultrasonic,
and etc. Besides, the sensing signal can not be easily affected
by noise at low frequency band. Therefore, in order to fit
to the requirements discussed above, a set of suitable CTV
analog sensing circuits with digitalized interface is designed
in this work. Although previous works [17]–[22] followed
by the CTV method have been excellently presented, a total
solution including the CTV analog sensing circuits and dig-
italized interface have not completely discussed yet. A table
of comparisons to previously published designs is listed in
Table I. Readers can understand the whole design techniques
from this work, and this is the main contribution of this work.

In this work, a digitized vibration detector implemented
by CMOS digitized capacitive transducer with in-plane SOI
accelerometer is newly proposed. The area of the proposed
CMOS digitized capacitive transducer is 1812 × 1420 μm2

and the power consumption including digital buffers is 18 mW.
The sensitivity of the proposed CTV analog sensing circuits
is 50.488 mV/g and maximum nonlinearity is 2.5% over
the excitation of 0.25 to 5.75g intensity. The noise floor
is 0.922 mg/Hz1/2. The cross-axis Y sensitivity and cross-
axis Z sensitivity are less than 1.7% and 1.66%, respectively.
The peak signal-to-noise-plus-distortion ratio of the proposed
digitized vibration detector is 67.6 dB under excitation of
3.25g intensity. The effective resolution is equal to 11 bits. The
proposed digitized vibration detector is suitable for digitized
accelerometer applications, such as automobiles, consumer
electronics, Wii game player, etc.

In section II, the capacitive in-plane SOI accelerometer is
addressed. The system architecture and simulation results are
described in section III. In section IV, measurement results are
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TABLE I

COMPARISONS TO PREVIOUSLY PUBLISHED DESIGNS

shown and discussed. Finally, section V gives conclusions and
future works.

II. CAPACITIVE IN-PLANE SOI ACCELEROMETER

The microphotograph and measured results of the capacitive
in-plane SOI accelerometer [11] are shown in Fig. 1. The mea-
sured resonant frequency is 4.987 kHz. Fabrication of MEMS
devices using an SOI wafer has advantages. Firstly, it has the
superior material properties due to a single crystal material.
Using SOI techniques, thick devices are easily achieved.
Finally, it can have less residual stresses and simple fabrication
processes. The implementation of inertial sensors by using an
SOI wafer has been increased [4], [6], [11], [25], [28], [30].
More detailed specification information and sensor model
of the in-plane SOI accelerometer can be referred to [11].
In the section IV, the measured in-plane SOI accelerometer
is experimented on the proposed CMOS digitized capacitive
transducer. In the following sections, all the discussions of

system architecture, simulations, and measurement results are
completely discussed.

III. SYSTEM ARCHITECTURE AND SIMULATION RESULTS

Fig. 2 shows the block diagram of the proposed CMOS
digitized capacitive transducer, which consists of the capaci-
tance to voltage converter (CVC), the demodulated chopper,
Gm-C low-pass filter, gain amplifier, and the 4-stage sigma-
delta modulator. All the circuit structures are discussed in this
section clearly.

A. Capacitance to Voltage Converter and Gain Amplifier

According to the principle of the charge conservation, any
capacitance variations will also affect the corresponding volt-
age value. When the vibration makes the accelerator change
its capacitance, a voltage signal is generated at the same
time. Based on this principle, the proposed CTV analog
sensing circuits are thus designed. Fig. 3 shows the circuit
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Fig. 1. The (a) microphotograph (b) measured resonant frequency of the
in-plane SOI accelerometer. The resonant frequency is 4.987 kHz.

Fig. 2. The block diagram of the proposed CMOS digitized capacitive
transducer.

schematic of the capacitance to voltage converter and gain
amplifier. The main difference between them is the value of
the capacitance C1 and C2. In Fig. 3(a), the C1 is the nominal
capacitance of the accelerator and C2 is designed as a fixed
capacitance of 200 fF. Due to the post-process variation, the
nominal capacitance of the C1 is generally varied between
200 to 600 fF, and the minimum and maximum capacitance
of the �C is varied between 0.001 to 0.2% of the nominal
capacitance. For the gain amplifier shown in Fig. 3(b), the
C1 and C2 are designed 1.1 pF and 50 fF, respectively. The
operational amplifier (OP) used in the CVC and gain amplifier
is shown in Fig. 4. For gain amplifier, the OP performance
over the frequency range from 0.1 Hz to 1 GHz is illustrated
in Fig. 5. The DC gain is 72 dB, the unit gain bandwidth is
58.9 MHz, and the phase margin is 80.1°. The noise power of

Fig. 3. The circuit schematic of the (a) capacitance to voltage converter
and (b) gain amplifier.

Fig. 4. The circuit schematic of the operational amplifier used in the CVC
and gain amplifier.

Fig. 5. SPICE simulation results of the operational amplifier over the
frequency range from 0.1 Hz to 1 GHz (a) gain and (b) phase response.

the flicker noise (1/f noise) of the OP is expressed as

V̄ n2 = K

CO X W L

1

f
� f (1)
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Fig. 6. The circuit schematic of the bias circuit built from the bandgap
reference.

Fig. 7. The circuit schematic of the demodulated chopper.

where K is a process dependent constant and is on the order of
10−25 V2F, CO X is the capacitance per unit area of the gate
oxide and is on the order of 10 fF/μm2, and W and L are
the dimensions of the transistors in the input stage. Analyzing
from (1), the noise power can be reduced by making the sizes
of the transistors (i.e. M1 and M2) larger. In the specification
the resolution of the preamplifier is 10 bits. The noise needs to
be less than 1 LSB. The integral noise power is expressed as

√
√
√
√
√

20k∫

20

K

Cox W L

1

f
≤ V i

210 (2)

where Vi is the input signal and is on the order of 10 μV.
By performing SPICE simulations, the flicker noise is integral
over the frequency range from 20 Hz to 20 kHz. Thus,
W and L are obtained. In order to avoid the effect of the
temperature variations, the bias circuit is built with a bandgap
reference and demonstrated in Fig. 6. The output voltage of
the bias circuit is expressed as

Vb = (
I16

I8

R3

R2
VT ∗ ln n + VB E3) ∗ R6

R4 + R5 + R6
(3)

where VT is kT/q, I16 and I8 is the currents of MOS
M16 and M8, VB E3 is the base-emitter voltage of bipolar
transistor (BJT) Q3, and n is the ratio of collector currents
between the BJT Q2 and Q1. In order to avoid interference
by noise, chopping modulation principle is used. As shown
in Fig. 2, the proof mass of the accelerator is chopped
with a pulse signal. The sensing signal and noise at low
frequency band are moved into high frequency band together.
By performing the demodulated chopper as shown in Fig. 7,

Fig. 8. The circuit schematic of the Gm-C low-pass filter.

Fig. 9. The circuit schematic of the Gm cell.

the sensing signal is moved into its original frequency band.
However, noise remains to stay at the high frequency band.
After the demodulated chopper, a low-pass filter is required to
select the sensing signal and filter out the unwished signals,
such as noise. The block scheme of the low-pass filter is
designed with the 2nd order Gm-C structure as shown in Fig. 8.
The transfer function is derived as

V outn − V outp

V inn − V inp
= gm2

s2C1C2 + sC2gm + gm2 (4)

ω0 = gm√
C1C2

, Q =
√

C1

C2
(5)

where gm is the transconductance of the Gm cell demonstrated
in Fig. 9, Q the quality factor of the filter, ω0 the cut-
off frequency of the filter. When the transconductance is
designed well, the cut-off frequency can be easily adjusted by
changing the C1 or C2. All the circuit blocks are integrated and
grouped as the proposed CTV analog sensing circuits. In the
SPICE simulations, the transient simulations of the output
nodes of each analog block are demonstrated in the Fig. 10.
As displayed, the sensing signal can be successfully obtained.
The final close-loop gain of the proposed CTV analog sensing
circuits is around 20.

B. 4-Stage Sigma-Delta Modulator

Considering digital conversion of 14 bits resolution,
the design of sigma-delta modulator (SDM) is selected.
Several different modulators have been used to achieve high
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Fig. 10. SPICE transient results of the capacitance to voltage converter,
chopper, Gm-C low-pass filter, and the gain amplifier. The nominal capaci-
tance of the C1 is 200 fF and �C is 2 aF. The signal frequency is 1 kHz and
the chopping frequency is 200 kHz.

resolution, such as multi-loop cascade, multibit, high-order
single-loop single-bit, etc [33]. In this work, a high-order
single-loop single-bit architecture is chosen. The structure is
attractive due to the high signal-to-noise ratio (SNR) and
simple implementation. The oversampling ratio (OSR) and
loop order n should be decided. For the single-bit architecture,
the relationship between the dynamic range (DR) and OSR
becomes

DR = 3

2
(
2n + 1

π2n
)OS R2n+1. (6)

In order to consider the degradation of the achievable DR
[33] and circuit non-idealities, an OSR of 256 and n of 4 are
chosen.

The proposed sigma-delta modulator consists of four inte-
grators, two analog summers, an one-bit DAC, a quantizer,
and gain circuits. The gain circuits provide feedforward gain
B1 to B4 and feedback gain G1 as displayed in Fig. 11. The
noise transfer function (NTF) of the proposed sigma-delta
modulator is obtained by employing signal flow graph (SFG)
and derived as

NT F(Z)

= 1
⎧

⎨

⎩

1 + A1 B1(
1

Z−1 ) + (A3 A4G1 + A1 A2 B2)(
1

Z−1 )2

+(A1 A3 B1 B4G1 + A1 A2 A3 B3)(
1

Z−1 )3

+(A1 A2 A3 A4 B4 + A1 A2 A3 A4 B2G1)(
1

Z−1 )4

⎫

⎬

⎭

(7)

where A1, A2, A3, A4, B1, B2, B3, B4, and G4, are
coefficients of the proposed sigma-delta modulator. With

Fig. 11. The topology of the proposed sigma-delta modulator for the digitized
capacitive transducer.

careful filter design, a Butterworth high-pass NTF is
obtained as

NT Fbutterworth(Z) = 1
⎧

⎨

⎩

1 + 0.0583( 1
Z−1) + 0.2687( 1

Z−1)2

+0.0672( 1
Z−1)3

+0.0051( 1
Z−1)

4

⎫

⎬

⎭

(8)

By using MATLAB to perform the behavior simulations of
the NTFbutterworth (Z), the poles of the NTFbutterworth (Z) are
all located inside the unit circle, which are 0.8167 ± 0.4804i
and 0.8912 ± 0.044i. Thus, it analyzes in ensuring stability.
By mapping (7) and (8), the coefficients of A1, A2, A3, A4,
B1, B2, B3, B4, and G4 are 0.166, 0.35, 0.25, 0.1, 5, 4.6, 3.8,
3.4, and 0.0166, respectively. The circuit implementations of
the proposed sigma-delta modulator is built and demonstrated
in Fig. 12. The entire circuit is implemented in switched-
capacitor (SC) networks. In the modulator, the OP is the
main building block which determines the main performance
and consumes most of the current of the whole circuits.
The folded-cascaded OP shown in Fig. 13 is designed. The
SC common-mode feedback (SC CMFB) is used due to its
simplicity and efficiency in current consumption. To avoid sig-
nal dependent charge injection, non-overlapping clock signals
are used. Instead of OP-based analog summer, the SC-based
analog summer can reduce power consumption, and the circuit
is implemented as shown in Fig. 14(a). Besides, the quantizer
is displayed in Fig. 14(b). SPICE simulations are performed
to obtain the output codes of the proposed sigma-delta mod-
ulator. These digital codes are used to calculate the signal-to-
noise-plus-distortion ratio (SNDR) of the modulator through
dedicated MATLAB programs. The dedicated programs are
to perform fast Fourier transform (FFT) from these obtained
codes. These codes are to calculate the signal power and noise
power from the FFT data, and finally are to calculate the value
of the SNDR. After performing MATLAB simulations, Fig. 15
shows the SNDR versus the input signal level. The DR is
98 dB and the peak SNDR is 86.1 dB. The effective resolution
is equal to 14 bits, which is calculated as (86.1−1.76)/6.02 =
14 bits.
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Fig. 12. The whole circuit schematic of the proposed sigma-delta modulator.

Fig. 13. The circuit schematic of the folded-cascaded OP used in the proposed
sigma-delta modulator.

C. The Whole System

All the circuit blocks are integrated into the proposed
digitized vibration detector. The output signals of the proposed

CTV analog sensing circuits are inputted into the 4-stage delta-
sigma modulator. In Fig. 16, the peak SNDR is around 69.2 dB
under the nominal capacitance of the C1 of 600 fF and �C
of 1.2 fF. The signal frequency is 1 kHz and the chopping
frequency is 200 kHz. The effective resolution is equal to
11.2 bits. All the functions and performance of the proposed
digitized vibration detector are successfully tested and proven
through SPICE simulations.

IV. MEASUREMENT RESULTS

Fig. 17 demonstrates the physical layout and
microphotograph of the proposed CMOS digitized capacitive
transducer. The area of the proposed CMOS digitized
capacitive transducer is 1812 × 1420 μm2 and the power
consumption including digital buffers is 18 mW. Fig. 18 shows
the proposed digitized vibration detector and measurement
setup. The measurement setup includes power supplies,
a LDS V40B electrodynamic shaker, a Tektronix-TDS1012B
oscilloscope, a Tektronix-3022B signal generator, an Agilent-
33522A function generator, an Agilent-35670 dynamic signal
analyzer, and the proposed chip. Firstly, the shaker is excited
by the signal generator. In the measurement, the frequency of
shaker is fixed at 100 Hz. The function generator is used to
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Fig. 14. The circuit schematic of (a) analog summer and (b) quantizer.

Fig. 15. The SNDR versus input signal level.

generate the chopping frequency and the sampling frequency.
The chopping and sampling frequency are fixed at 200 kHz
and 5 MHz, respectively. The dynamic characteristic of the
shaker is also monitored by a commercial accelerometer

Fig. 16. The output spectrum of the proposed digitized vibration detector.
The nominal capacitance of the C1 is 600 fF and �C is 1.2 fF. The signal
frequency is 1 kHz and the chopping frequency is 200 kHz.

Fig. 17. The (a) physical layout and (b) microphotograph of the proposed
CMOS digitized capacitive transducer.

Fig. 18. (a) The proposed digitized vibration detector and (b) the measure-
ment setup.

PCB-J352C34. After exciting the shaker, the sensing signal
of the proposed digitized vibration detector is measured to
analyze the transient and frequency response. The transient
responses of the reference accelerometer and the proposed
CTV analog sensing circuits with excitation of 2.5g intensity
are shown in Fig. 19, respectively. The upper waveform is the
output of reference accelerometer, and the lower waveform
is the output of the proposed CTV analog sensing circuits.
Measured results of digitized stream output with excitation
of 2.5g intensity are displayed in Fig. 20. As proven, the
digitized stream output is correctly pulse-density modulated.
In Fig. 21, the frequency response is measured under
excitation of 1g intensity. As displayed, the capacitance
variations of the in-plane SOI accelerometer are successfully
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Fig. 19. The transient response of the reference accelerometer and the
proposed CTV analog sensing circuits with excitation of 2.5 g intensity. The
frequency of shaker is (a) 100 Hz and (b) 1 kHz.

Fig. 20. Measured results of digitized stream output with excitation of 2.5 g
intensity. The frequency of shaker is (a) 100 Hz and (b) 1 kHz.

converted into voltage variations by the proposed TV analog
sensing circuits. All the measured outputs of the proposed
CTV analog sensing circuits are plotted in Fig. 22. The

Fig. 21. The frequency response of the proposed digitized vibration detector.
The frequency of shaker is 100 Hz and is also with excitation of 1g intensity.

Fig. 22. The sensitivity of the proposed digitized vibration detector under
shaking frequency of 100 Hz and excitation of 1g intensity.

sensitivity is 50.488 mV/g over the excitation of 0.25 to
5.75g intensity. In addition, the noise floor is determined
from [11]

Noise f loor = output noise

sensi tivi ty
× (

1√
bandwidth

) (9)

where the output noise and the bandwidth are measured by
the dynamic signal analyzer. The output noise and bandwidth
are 46.56 μV and 1 Hz, respectively. By (9), the noise floor is
0.922 mg/Hz1/2. Moreover, maximum nonlinearity is derived
as [34]

Maximum non-lineari ty=maximum deviation (V)

f ull scale output (V )
×100%.

(10)

By (10), maximum nonlinearity is 2.5% over the excitation of
0.25 to 5.75g intensity. In Fig. 23, the cross-axis sensitivities
in the Y-axis and Z-axis are measured under excitation of
1g intensity. The cross-axis Y sensitivity and cross-axis Z
sensitivity are less than 1.7% and 1.66%, respectively.

Finally, measured results of the peak SNDR of the proposed
digitized vibration detector are shown in Fig. 24. The peak
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Fig. 23. The cross-axis (a) Y and (b) Z sensitivity of the proposed digitized
vibration detector under shaking frequency of 100 Hz and excitation of 1 g
intensity.

Fig. 24. Measured results of the peak SNDR of the proposed digitized
vibration detector. The peak SNDR is 67.6 dB under shaking frequency of
100 Hz and excitation of 3.25g intensity.

SNDR is 67.6 dB under excitation of 3.25g intensity. The
effective resolution is 11 bits. Compared with simulation
results in section II, the effective resolution is almost the

TABLE II

SUMMARY ON THE CHARACTERISTICS OF THE PROPOSED

DIGITIZED VIBRATION DETECTOR

same. That implies that the proposed CMOS digitized capaci-
tive transducer and in-plane SOI accelerometer are robustly
and compactly combined together. Thus, all the functions
and performance between simulations and measurements can
successfully match each other. Compared with [17]–[22], the
output type of this work is digital. However, the whole noise
floor of this work is higher than other works. That is because
more back-end signal processing circuits are added in this
work. Thus, more noise coming from circuits must be also
generated. Although the sensitivity of this work is not as large
as previous works, it can be adjusted by the gain of gain
amplifier. The characteristics of the proposed CMOS digitized
vibration detector are summarized in Table II.

V. CONCLUSION

A digitized vibration detector implemented by CMOS dig-
itized capacitive transducer with in-plane SOI accelerometer
is newly proposed. All the functions and performance of the
proposed CMOS digitized vibration detector are successfully
tested and proven through measurements. The core function-
alities of the proposed digitized vibration detector are suc-
cessfully obtained and may be applied to the automobiles and
consumer products. In the future, the developed techniques are
adaptively designed into digitized accelerometer applications.
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