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Abstract
This work presents a miniaturized tracking and focusing optical pickup head
implemented using MEMS technology. The device was fabricated by poly-Si
trench-refilled technology and used a UV-cured polymer droplet or micro
ball lens as the objective lens. A bidirectional vertical comb-drive actuator
and V-beam thermal actuator drove the objective lens for the out-of-plane
(focusing) and in-plane (tracking) motion, respectively. In applications,
various tracking and focusing devices have been successfully fabricated
and characterized. The upward and downward displacement of the focusing
optical pickup head is 2.9 and 1.7 µm, respectively; the in-plane displacement
of the tracking optical pickup head is ±46.7 µm. The resonant frequencies
of the focusing and tacking systems are 2.3 and 8.5 kHz respectively.
In addition, the UV-cured polymer lens and solid micro ball lens were
both successfully integrated with a MEMS device to create an objective lens.
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1. Introduction

Due to the demands of information technology and personal
commercial products, compact and high density data storage
systems have been the key technology of the state-of-the-
art. Recently, several approaches to high density data
storage have been widely investigated based on MEMS
technologies, such as the magnetic hard-disk drive [1–3],
magnetic-optical recording [4], and modified AFM (atomic
force microscope) [5, 6]. An optical data storage system is
another key solution for increasing data density for the next
generation. A high numerical aperture (NA) optical system
substantially increases the storage density in terms of smaller
optical spot. However, such high storage density requires
a very high bandwidth servo-tracking system to precisely
position the optical pickup head in a narrow track spacing
(∼100 nm). One promising solution is to develop micro
actuators for nanoscale positioning.

The development of an optical pickup head using MEMS
technology has been demonstrated extensively. Various optical

elements have been integrated on a micro optical bench
by means of micromachining process [7, 8]. Piezoelectric
actuators [9] and bimorph thermal actuators [10] have
been exploited for data tracking. Moreover, electrostatic
vertical comb-drive actuators for optical focusing have been
demonstrated in [11, 12]. The concept of integrating UV-
cured polymer lenses with MEMS actuators has also been
demonstrated in [13]. In this case, the in-plane and out-of-
plane positioning actuators are integrated by means of bonding
technique. However, the travelling distance of the micro-
actuator remains one of the primary design considerations.
The concept of a dual-stage slider was first presented in [14]
for hard-disk data storage systems. In order to improve
the travelling distance and response, a more complete dual-
stage system was further demonstrated in [3] for a hard-disk
drive. The simple and efficient method of a dual-stage servo
controller is also demonstrated in [15].

In general, a dual-stage optical storage system consists of
a conventional voice coil motor (VCM) and MEMS actuators.
The conventional VCM actuator acts as a coarse, low-speed,
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Figure 1. Schematic diagram of proposed dual-stage optical data
storage system.
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Figure 2. Proposed focusing optical pickup head: (a) schematic
diagram of the device, and (b) the principle of bidirectional
actuation.

but large-stroke positioner, whereas the MEMS actuator acts as
a fine, high-speed, but small-stroke positioner. The integration
of the VCM and MEMS actuators will satisfy the requirements
of travelling distance, precision positioning, and fast response
for data speed and density. The goal of this study is to develop
MEMS actuators of a dual-stage optical storage system for
small displacement (∼10 µm) precision tracking and focusing.
In short, a novel bidirectional vertical comb MEMS actuator
acts as a focusing positioner, and the V-beam thermal MEMS
actuator serves as a tracking positioner.

2. Concepts and design

This concept of the presented dual-stage optical storage system
is shown in figure 1. In this dual-stage system, the MEMS
device is designed to attach to a conventional actuator. The
MEMS device consists of micro actuators, a lens holder,
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Figure 3. Proposed tracking optical pickup head: (a) schematic
diagram of the device, and (b) the parameter definitions of the
V-beam thermal actuator.

and a UV-cured polymer lens (or a micro ball lens). The
incident light beam is focused by the micro objective lens
and modulated by the MEMS and conventional actuators.
Figure 2(a) shows a schematic illustration of the present
MEMS focusing device. A movable lens holder is connected
to a stationary rigid frame by four thin film springs. The
lens holder is designed to place the micro lens. The out-
of-plane position of the lens holder, regardless of upward
or downward directions, is tuned by two pairs of vertical
comb actuators (named upward and downward combs in
figure 2(a)). As indicated in figure 2(a), the moving electrodes
are located below the stationary electrodes for the upward
combs, whereas the moving electrodes are located above the
stationary electrodes for the upward combs. The stationary
electrodes of the upward and downward combs are electrically
isolated and can be individually actuated, and the moving
electrodes are grounded through thin film springs. Figure 2(b)
shows that the upward motion is actuated by V0 and V1, while
the downward motion is actuated by V0 and V2. Moreover,
the thickness and location of the vertical comb electrodes are
tunable by the process to improve the travelling distance and
driving voltage [16]. In this design, the thicknesses of the
movable combs and stationary combs are both 20 µm, so that
the expected travelling distance is 20 µm.

The travelling distance could be limited by the side-
sticking effect due to the misalignment of the comb
electrodes [17]. In this work, the self-aligned vertical
combs technique is adopted to prevent misalignment of the
electrodes [18]. The in-plane to out-of-plane stiffness ratio
of the thin film spring in figure 2(a) will also influence the
occurrence of side-sticking. The in-plane to out-of-plane
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Figure 4. Fabrication process steps.

stiffness ratio Kratio of a thin film spring with thickness t and
width w is (w/t)2. In this design, the beam width w is 20 µm
and the thickness t is 2 µm, so Kratio is near 1000. Therefore,
the side-sticking effect can be suppressed by thin film springs.

As figure 3(a) shows, the proposed in-plane motion
tracking device consists of V-beam thermal actuators [19]
and a lens holder. After the thermal expansion of the V-
beam by joule heating, the actuator will push the lens holder
in the in-plane direction. The V-beam actuators located at
both sides of lens holder are employed to move the light
beam in the opposite direction. The travelling distance of
the actuator is determined by the beam length L and angle
θ , as figure 3(b) shows. When voltage is applied across V-
beam structures, the electrical current leads to joule heating
in the V-beam structures. Therefore, the thermal expansion of
V-beam structures would generate an in-plane displacement,
as indicated by δ in figure 3(b). In the present design, L is
2000 µm and θ is 1◦. According to the finite element method
(FEM) simulation results, the maximum travelling distance (δ)

is near 40 µm. In addition, the inclined V-beams also serve
as the suspension mechanism of the device. In this design, the
V-beam width w is 2 µm and the thickness t is 20 µm, so the
in-plane to out-of-plane stiffness ratio Kratio is near 0.001. This
indicates that the V-beam is appropriate to act as an in-plane
spring.

3. Fabrication and results

It is a real challenge to fabricate the device in figure 2(a) with
various out-of-plane dimensions. The fabrication processes
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Figure 5. Fabrication results of the proposed optical pickup head:
(a) bird’s eye view of the focusing optical pickup head, (b) close-up
view of bidirectional actuators, (c) the tracking optical pickup head,
and (d) UV-cured polymer lens integrated with the releasing device.

employed in this study are illustrated in figure 4. The
processes began with the deposition and patterning of thermal
oxide, as shown in figure 4(a). A second photolithography
was used to define the location of deeper trenches. The
patterned thermal oxide and photoresist were used as the self-
aligned etching masks for the following DRIE (deep reactive
ion etching). The photoresist in figure 4(a) was removed
after the first DRIE. The silicon oxide acted as the etching
mask for the second DRIE. The silicon substrate had self-
aligned trenches with two different depths for the vertical comb
electrodes after the second DRIE, as shown in figure 4(b).
After that, these trenches were fully refilled by thermal oxide
and first LPCVD (low pressure chemical vapour deposition)
poly-Si films, as shown in figure 4(c). After the first poly-Si
was patterned, the Six Ny sacrificial layer and second poly-Si
structural layer were deposited and patterned, as shown in
figure 4(d). The Six Ny and second poly-Si also served as
electrical interconnections for the electrically isolated comb
electrodes. After being patterned with photoresist, the third
DRIE was exploited to etch the first poly-Si, as shown in
figure 4(e). The thickness of the trench-refilled poly-Si was
trimmed, and the initial engagement of the comb electrodes
was defined. Hence micromachined structures located at
different out-of-plane positions became available, so as to
realize the vertical comb electrodes. In addition, the V-beam
thermal actuators and lens holder were also implemented using
the shallow refilled trenches. In figures 4(f), (g), we see that
low stress nitride was deposited and patterned as the etching
mask for bulk silicon etching. Meanwhile, the poly-Si film
was fully covered by the thermal oxide and the Six Ny films.
The substrate was then immersed into tetra-methyl ammonium
hydroxide solution for bulk silicon etching. The thermal oxide
and the Six Ny performed as passivation layers for the poly-
Si structure during double-side bulk silicon etching. A hole
was available for the incident light to pass through the wafer.
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(a) (b) 

Figure 6. Measured results of focusing optical pickup head: (a) the static load–deflection test for upward and downward actuation, and (b) the
frequency response of the device.
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Figure 7. Result of profile measurement by optical interferometer: (a) the poly-Si spring had 4.7 µm displacement after buckling, and
(b) schematic diagram of the resulting initial position of the vertical comb drive electrodes.

Finally, the passivation layers were removed and the UV-cured
polymer droplet was dropped into the lens holder, as shown in
figure 4(h).

Figure 5 shows various typical fabrication results.
Figure 5(a) shows the focusing MEMS device. The close-up
photograph in figure 5(b) shows the upward and downward
combs, stiff lens holder, and flexible film–film poly-Si springs.

The initial engagement available by the third DRIE trimming is

3 µm to provide a larger electrostatic driving force. Figure 5(c)

shows the tracking MEMS device including the V-beam

actuators and the lens holder. The UV-cured polymer lens was

successfully placed in a lens holder with a diameter of 200 µm,

as shown in figure 5(d).
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(a) (b) 

Figure 8. Measured results of tracking optical pickup head: (a) the static load–deflection test for in-plane actuation, and (b) the frequency
response of the device.
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Figure 9. Optical property of UV-cured polymer lens: (a) the surface roughness of the lens measured by an optical interferometer, and (b) the
intensity profiles of the incident beam and focusing beam.

4. Testing

To demonstrate the performance of the proposed devices, the
static and dynamic characteristics of the fabricated MEMS

devices were measured. The device was driven by DC voltage
for static load–deflection tests, and by AC voltage for dynamic
resonant tests. The out-of-plane displacement of the focusing
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device was measured by an optical interferometer, and the
typical measured results are shown in figure 6. The maximum
upward displacement of the device was 2.9 µm when the
driving voltage reached 100 V, and the maximum downward
displacement was 1.7 µm when the driving voltage was 75 V,
as shown in figure 6(a). An optical laser Doppler vibrometer
was used to measure the out-of-plane dynamic response of the
devices. The frequency response of the focusing device is
shown in figure 6(b), and the resonant frequency associated
with the first out-of-plane spring bending mode is 2.3 kHz.

The thickness of the electrodes was 20 µm; hence the
ideal travelling distance of focusing device was also 20 µm.
However, the measured maximum displacements in figure 6(a)
were much smaller than the predicted ones. The measurement
results in figure 7(a) show that the poly-Si springs had an initial
buckling of 4.3 µm (upward) by residual compression. The
initial positions of the lens holder and the moving electrodes
were also moved upward. Thus the initial engagement of
electrodes as illustrated in figure 7(b) and the associated
driving voltages were all changed. In addition, the spring
stiffness was also increased by the initial deformation. Some
stress engineering [20] or stress releasing structure [21] would
be useful to improve the residual stress and prevent this
phenomenon.

The in-plane displacement of the tracking device was
measured using a commercial in-plane micro motion analyser.
Figure 8(a) shows a typical measurement result of a static
load–deflection test. The in-plane displacement of the device
driven by a single-side V-beam actuator was 46.7 µm when
the driving voltage was 8.5 V. The frequency response in
figure 8(b) shows that the first resonant frequency of a typical
tracking device is 8.5 kHz. The frequency response also
indicates that the MEMS device has a quick response and a
high bandwidth for a servo-tracking system.

The optical properties of the UV-cured polymer lens were
also measured. Figure 9(a) indicates the surface profile of
the UV-cured polymer lens that was measured by an optical
interferometer. The average surface roughness of the x-axis
and y-axis was 3.13 and 5 nm, respectively. Moreover, the
surface roughness of the polymer lens measured by AFM was
also less than 10 nm. Therefore, the polymer lens provided
a good surface for optical applications. In addition, the
intensity profiles of the focused beam were measured by the
beam profiler, as indicated in figure 9(b). A laser beam was
incident on the UV-cured polymer lens (diameter ∼600 µm)
from the backside of the substrate, and then focused on a
beam profiler by the polymer lens. The spot size of the
incident beam and focusing beam is ∼600 and ∼10 µm
(full width at half maximum), respectively. The focused
spot size of the available UV-cured polymer lens was far
from the optical requirements. In this regard, this study also
demonstrated another approach that used the MEMS structure
(lens holder) to integrate a commercial high NA objective lens.
Figure 10(a) shows the integration of a micro ball lens (size
∼250 µm) and a MEMS focusing actuator. The micro ball
lens was picked by vacuum handler and assembled on the lens
holder. Thus, the optical properties of the miniaturized MEMS
pickup can be significantly improved. Lastly, figure 10(b)
demonstrates the system integration of a dual-stage optical
pickup head consisting of a MEMS tracking positioner and

(a) ball lens

(b) 
MEMS chip commercial actuator

Figure 10. (a) A micro ball lens was integrated with focusing optical
pickup head, and (b) the system integration of a dual-stage optical
pickup consisting of a MEMS tracking positioner and a conventional
actuator.

a conventional VCM actuator. The objective lens of the
conventional optical pickup head was replaced by the MEMS
positioner and polymer lens. The integration of the VCM and
MEMS positioner will satisfy the requirements of travelling
distance, precision positioning, and fast response for data speed
and density.

5. Conclusions

This study has demonstrated focusing and tracking MEMS
devices for an optical pickup head. Novel fabrication processes
have been established to realize MEMS devices with various
out-of-plane dimensions. The comb electrodes are self-aligned
by the present process; moreover, the initial engagement of
the vertical comb electrodes is tunable. In addition, other
key components such as the lens holder and the V-beam
thermal actuator are also available through this process. The
thin-film suspension and electrically isolated interconnection
are available through poly-Si and dielectric Six Ny . The
measurement results show that the present MEMS devices have
a quick response and a high bandwidth. The surface roughness
of the UV-cured polymer lens is less than 10 nm. In additions,
the UV-cured polymer lens and solid micro ball lens were both
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successfully integrated with a MEMS device. In summary, the
dual-stage optical pickup head consisting of a MEMS tracking
positioner and a conventional VCM actuator will significantly
increase data speed and density for next generation optical data
storage system. This study also demonstrates the potential of
integrating various optical components (e.g. MEMS actuators
and micro-optics) fabricated using different techniques. Thus
the design of high performance opto-mechanical systems
becomes more flexible.
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