
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF MICROMECHANICS AND MICROENGINEERING

J. Micromech. Microeng. 15 (2005) 351–357 doi:10.1088/0960-1317/15/2/015

Comments on determining the elastic
modulus of a thin film using the
micromachined free–free beam
Chisheng Yu, Changchun Hsu and Weileun Fang

Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu,
Taiwan

E-mail: fang@pme.nthu.edu.tw

Received 29 July 2004, in final form 14 October 2004
Published 24 November 2004
Online at stacks.iop.org/JMM/15/351

Abstract
The study investigates the vibration characteristics of the micromachined
free–free beam through analytical and experimental means. In application,
this study employed the resonant frequency of the micromachined free–free
beam to successfully extract the elastic modulus of a thin film. As a
comparison, the vibration characteristics of a micromachined cantilever
have also been studied. This study demonstrates that the micromachined
free–free beam is a better test key to extract the thin film elastic modulus
when the wafer experiences a relatively long etching time. Moreover, the
micromachined cantilever gives a lower bound and the micromachined
free–free beam gives an upper bound while determining the thin film elastic
modulus. Since the free–free beam is a previously fabricated and modeled
micromachined structure, it can be employed as a supplement test key to the
cantilever beam approach.

1. Introduction

The vibration characteristics of micromachined structures have
been applied extensively in the MEMS area. For instance, the
optical scanner [1], RF filter and resonator [2, 3] and bio-
sensor [4] have all been studied. The resonant frequency
of micromachined diagnostic structures (test key) has been
exploited to determine the mechanical properties of thin films
[5–8]. There are various advantages of using the resonant
approach to measure the thin film material properties: (1) the
available test structure is easily fabricated and modeled, (2) no
physical contact with the test structure is required during the
experiment and (3) the dynamic response at resonant frequency
is large and sensitive.

Presently, the most popular test structures for thin
film characterization are micromachined bridges [5] and
cantilevers [6–8]. The resonant frequency of a micromachined
cantilever has been extensively employed to determine the
elastic modulus and Poisson’s ratio of thin films [6–8].
However, the boundary condition of a bulk micromachined
cantilever is influenced by the undercut of the substrate during
bulk silicon etching. Moreover, the surface micromachined
cantilever is not clamped perfectly due to the existence

of a step at its boundary. In this regard, the boundary
of a micromachined cantilever should be modeled as the
combination of a linear and a torsional spring. With
increased etching time, the undercut effect is even more severe.
Thus, the thin film elastic modulus determined from the
micromachined cantilever test key is significantly influenced
by the fabrication processes. The boundary conditions of a
micro bridge on a (100) single crystal silicon substrate are
also very complicated [9]. In addition, the micro bridge
test key has no free end to release the thin film residual
stresses. The micro bridge will be tensed by residual tension
and buckled by residual compression. Thus, it is difficult
to accurately model the structural dynamics of the micro
bridge.

This study investigates the vibration characteristics
of a micromachined free–free beam through analytical
and experimental means. In application, this study has
successfully employed the micromachined free–free beam
to extract the elastic modulus of a thin film. As a
comparison, the thin film elastic modulus extracted from the
micromachined cantilever test key is also provided. This work
reduces the uncertainty of boundary conditions for different
micromachined test structures during a vibration test.
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Figure 1. Schematic illustrations of (a) the ideal first flexure mode
of the free–free beam, (b) the micromachined free–free beam and
(c) the physical model of the micromachined free–free beam.

2. Designs and analysis

The first flexural bending mode of a free–free beam, as shown
in figure 1, has been employed to determine the elastic modulus
of bulk materials. The test standard of this free–free beam
technique is properly defined by the American Society for
Testing Materials (ASTM) [10]. The thin film elastic modulus
can also be extracted from the resonant frequency fn (for flexure
bending modes) of a micromachined free–free beam. Based
on the Euler–Bernoulli beam model, the elastic modulus E can
be expressed as [11]

E = 48π2ρL4(fn)
2

(βnL)4h2
(1)

where ρ, L and h are the density, length and thickness of
the free–free beam, respectively. In addition, the parameter
βnL is a constant associated with the nth flexure modes of the
free–free beam and β1L = 4.73.

To survive after the micromachining processes, the
micromachined beams have to be connected (or anchored) to
the substrate. This study employed four springs to support the
free–free beam, as shown in figure 1(b). Additionally, these
four springs were designed to reduce the influence of the
vibration characteristics of the free–free beam. In this
regard, these four springs were connected to the nodes of
the first flexure mode of the free–free beam, as indicated in
figure 1(b). Figure 1(c) shows the physical model of the
micromachined free–free beam. Hence, the bending deflection
of the suspension due to the first flexure mode of the free–free
beam was significantly reduced. However, as indicated in

figure 1(a), the angular deflection of the nodes (from θ1 to θ2)
cannot be ignored. This will lead to the twisting of these four
springs. Thus, an ideal micromachined free–free beam can
be realized if the torsional stiffness of these four springs is
very small. In this study, commercial finite element method
(FEM) software was employed to determine the variation of
the spring stiffness with the natural frequency of the beam.

In addition to the FEM, the analytical solution of the first
bending resonant frequency of the micromachined free–free
beam shown in figure 1(c) was also established. Rayleigh’s
method was applied to find an approximation for the first
natural frequency f1 of the free–free beam. When vibrating
at the first flexural mode, the maximum kinetic energy of the
free–free beam in figure 1(c) can be expressed as [12]

Tmax = (2πf1)
2

2

∫ L

0
ρA[�(x)]2 dx. (2)

In equation (2), �(x) is the shape function for the first natural
frequency f1 of the free–free beam, and can be represented
as [12]

�(x) = Cn[sin β1x + sinh β1x + α1(cos β1x + cosh β1x)]

(3)

where Cn is a constant, and the parameter α1 is expressed as

α1 = sin β1L − sinh β1L

cosh β1L − cos β1L

and the parameter β1L = 4.73. Moreover, the maximum
potential energy of the free–free beam for the first flexural
mode becomes

Vmax = 1

2

∫ L

0
EI

[
d2�(x)

dx2

]2

dx +
1

2
Kt

[
d�(x)

dx

]2
∣∣∣∣∣ x=0.224L
x=0.776L

+
1

2
Ky[�(x)]2

∣∣∣∣ x=0.224L
x=0.776L

(4)

where x = 0.224L and x = 0.776L are the location of the
two nodes. Two more potential energy terms are contributed
by the twisting deformation of the torsional spring Kt and the
transverse deflection of the linear spring Ky. The total energy
is constant for a conservative system; in other words, Tmax =
Vmax. According to equations (2) and (4), the first natural
frequency of the free–free beam is determined from Rayleigh’s
quotient,

(f1)
2

=
∫ L

0 EI[ d2�(x)

dx2 ]2
dx+ 1

2 Kt[ d�(x)

dx
]2| x=0.224L

x=0.776L
+ 1

2 Ky[�(x)]2| x=0.224L
x=0.776L

4π2
∫ L

0 ρA[�(x)]2 dx
.

(5)

Therefore, the thin film elastic modulus E can be
determined from equation (5) after the resonant frequency f1
(the first flexural mode) of a micromachined free–free beam is
measured.

The torsional stiffness of the suspensions can be tuned
by varying their length and width. However, the minimum
beam width is limited to the fabrication processes such
as photolithography and etching. Figure 2 shows typical
simulation and analytical results of the variation of the first
bending resonant frequency with the suspension length, and
the suspension width is specified as 5 µm. In this case, the
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Suspension length vs Resonant frequency
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Figure 2. Variation of the resonant frequency with the suspension length from simulation and analysis.
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Figure 3. Variation of the predicted resonant frequency of the free–free beam due to the misalignment of the suspension and node.

deviation of resonant frequency between the ideal and the
micromachined free–free beam is less than 4% when the spring
length is more than 600 µm. Also, when the suspension length
increases from 100 µm to 500 µm, the deviation between
FEM and analytical solutions decreases from 3.8% to 0.7%.
Therefore, the analytical solutions agree well with the FEM
simulation results.

The suspensions may not precisely connect to the nodes
after the fabrication processes. Hence, the influence of the
misalignment between the nodes and the suspensions has
also been studied by the FEM simulation. Figure 3 shows
the variation of frequency shift due to the misalignment of
the node and the suspension. The solid circles indicate the
simulated resonant frequency of the micromachined free–free
beam when the suspensions are aligned perfectly with the
nodes. The open circles are the simulated resonant frequency
of the free–free beam when the suspensions are shifted to
the edge (outside) of the beam. The cross dots show the
simulated resonant frequency of the micromachined free–free
beam when the suspensions are shifted toward the middle
(inside) of the beam. The analytical results available in figure 3
show the same tendency. In short, the frequency shifts are all
less than 0.25% for a 2 µm deviation of the suspensions.
Moreover, the free–free beam could be bent by the gradient
residual stress of the thin film. The simulation results show
that the resonant frequency shift is less than 1.8% even though
the beam is bent with the radius of curvature of 1 mm.

3. Experiments

The bulk micromachined SiO2 free–free beam was employed
as the specimen for experimentation. During the vibration test,
the SiO2 free–free beams were excited by the PZT transducer
and the dynamics of these test structures were characterized
using the laser Doppler vibrometer (LDV).

3.1. Specimen preparation

In this experiment the SiO2 free–free microbeams, with the
length ranging from 250 µm to 500 µm, were fabricated
through bulk micromachining. Three different beam widths
(5 µm, 10 µm and 15 µm) were available for tests. The
torsional spring was 5 µm wide, and its length ranged from
50 µm to 1100 µm. The (100) single crystal silicon substrate
was placed in the furnace to grow 0.85 µm and 2 µm
thick thermal oxide films at 1050 ◦C. The thermal oxide
was patterned using reactive ion etching (RIE) after
the photolithography. After the substrate was etched
anisotropically by tetra-methyl ammonium hydroxide
(TMAH), the micromachined beams and torsional springs
were fully suspended. The process flow is shown in figure 4.
The scanning electronic microscope (SEM) photo in figure 5
shows a typical micromachined free–free beam. This
micromachined free–free beam was aligned 45◦ to the major
flat edge of the (100) silicon substrate, so as to significantly
reduce the bulk etching time.
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Figure 4. Fabrication process flow.

Figure 5. The SEM photo of a typical micromachined free–free
beam.

3.2. Experiment setup

The experiment setup is shown in figure 6. The PZT transducer
was employed to excite the micromachined beams. The
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Figure 6. Measurement equipment setup.

function generator and power amplifier in figure 6 were used
to produce a harmonic signal to drive the ultrasonic PZT
transducer. The function generator together with the power
amplifier can also be replaced by a pulse generator system.
Finally, the dynamic response of the microstructures was
measured from the LDV system. Both the time and frequency
responses of the microstructures can be recorded and analyzed
in the oscilloscope or frequency analyzer. The vacuum
chamber was also available in the experiment to prevent the
air effect (for example, spring, mass or damping) during the
vibration test.

3.3. Experimental results

Figure 7 shows the typical measurement results of the
suspension length versus resonant frequency. In this
experiment, the test free–free beam was 2 µm thick, 15 µm
wide and 250 µm long, with the suspension length ranging
from 50 µm to 500 µm. The resonant frequency of the
micromachined free–free beam gradually converges to a
value as the suspension length increases. The measurement
results show good agreement with the simulation shown in
figure 2.

The resonant frequency shift that resulted from the
misalignment of the suspension and the node was also
characterized. The measurement results are shown in figure 8.
The results indicate that the resonant frequency shift of the
micromachined free–free beam is less than 2.4% even if the
misalignment of the node and the suspension reaches ±8.5 µm.
Thus, the misalignment of the node and the suspension due
to the fabrication processes has very little influence on the
resonant frequency and mode shape. Therefore, this effect can
be ignored.

4. Applications and discussions

In application, this study extracted the elastic modulus of
SiO2 thin film from equation (1) after the resonant frequency
of the micromachined free–free test beam was determined.
As shown in figure 7, the resonant frequency of the free–free
beam will converge to the ideal value as the suspension length
increases. The elastic modulus of the thin film will also
converge from a larger value. In other words, the elastic
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Figure 7. Variation of the measured resonant frequency with the suspension length.

190000
194000
198000
202000
206000
210000
214000
218000

0 1 2 3 4 5 6 7 8 9

Node and suspension deviation (µm) 

R
es

on
an

t f
re

qu
en

cy
 (

H
z)

suspension shift outside

suspension shift inside

Figure 8. Variation of the measured resonant frequency of the free–free beam due to the misalignment of the suspension and node.

modulus determined using the aforementioned free–free beam
approach provides an upper bound of the exact value. The
elastic modulus of the SiO2 film measured using this approach
converged to 75.6 GPa when the suspension was increased to
500 µm. As the suspension increased to 900 µm, the elastic
modulus of the SiO2 film further converged to 67.9 GPa. In
comparison, the elastic modulus of the SiO2 film extracted
from the micromachined cantilever test key was 67.2 GPa.

The resonant frequency of a micromachined cantilever
has also been extensively employed to determine the elastic
modulus of thin films [6–8]. It is well known that the boundary
of a surface micromachined cantilever is not clamped perfectly
due to the step-up at its anchor. The boundary condition of a
bulk micromachined cantilever is influenced by the undercut,
and varies with the etching time. The boundary of an ideal bulk
micromachined cantilever will be precisely defined by {111}
planes after anisotropic etching of a {100} oriented silicon
wafer. In reality, the selectivity for {100} planes over {111}
planes is not infinite during anisotropic etching. The {111}
planes are gradually attacked, so that the boundary of the
cantilever will be undercut as shown in figure 9(a). In this
regard, the no-slope and no-displacement boundary conditions
for the ideal cantilever are no longer valid. The boundary
should be modeled as a combination of a linear (Ky) and
a torsional (Kt) spring as shown in figure 9(b). Thus, the
resonant frequency of the micromachined cantilever is smaller
than the ideal case. The elastic modulus determined from
the resonant frequency will also be smaller than the exact

(a)

(b)

Ky

Kt

Ky

Kt

undercut

Figure 9. The boundary undercut of cantilever (a) top and side
views and (b) physical model.

value. Moreover, with the increment of the etching time,
the undercut effect is even more severe. Thus, the thin film
elastic modulus determined using the resonant frequency of
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Cantilever beam boundary undercut effect
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Figure 10. The elastic modulus determined from the
micromachined cantilever test key at three different bulk etching
time points.
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Figure 11. Variation of the elastic modulus determined from the
micromachined free–free beam test key with the suspension length
at three different bulk etching time points.

the micromachined cantilever is significantly influenced by
the fabrication processes.

Figure 10 shows the variation of the elastic modulus
determined using the micromachined cantilever test key at
three different etching time points. The experimental results
showed that the elastic modulus of SiO2 film determined after
1 h bulk etching was 67.2 GPa. After bulk etching for 6 h, the
undercut effect led to a significant drop of natural frequency
of cantilevers. Although the variation of film thickness during
etching was considered, the elastic modulus of SiO2 film
extracted from the natural frequency of the micromachined
cantilever was still reduced to 52.7 GPa. In short, the elastic
modulus extracted from the micromachined cantilever test key
dropped 21.5% after 6 h of etching time. Therefore, cantilevers
are not an appropriate test key for longer etching times.

As for the micormachined free–free beam, the {111}
planes are also attacked during bulk silicon etching. The
undercut effect occurs at the boundary of suspensions, so as
to reduce the stiffness of the torsional spring Kt in figure 1(c).
Hence, the resonant frequency of the micromachined free–
free beam is closer to that of the ideal one under the
assistance of boundary undercut. In summary, the frequency of
the micromachined free–free beam will approach the ideal
value with a longer etching time. As shown in figure 11, the
elastic modulus is determined using the micromachined free–
free beam test key. Figure 11 shows the variation of the elastic
modulus with the suspension length ranging from 50 µm to
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Figure 12. Elastic modulus extracted by the micromachined
free–free beam and cantilever at different bulk etching time points.

900 µm at three different etching time points (1, 3 and 6 h).
According to the measurement results, the torsional stiffness Kt

of the suspension and the measured elastic modulus decreased
with increased etching time. For instance, the measured elastic
modulus of a 700 µm long suspension dropped from 78.3 GPa
to 69.6 GPa when the etching time increased from 1 h to 6 h.
In general, a more accurate elastic modulus can be extracted
from the ideal free–free beam model for a longer etching time.
Therefore, a micromachined free–free beam is a better test key
for a longer etching time.

In short, figure 12 shows variation of the measured elastic
modulus with the etching time for both micromachined free–
free beam and cantilever. According to the resonant beam
technique, the cantilever test key provides a lower bound
and the free–free beam test key provides an upper bound
for the measured elastic modulus. A more accurate elastic
modulus is obtained using the micromachined free–free beam
test key for a longer etching time. On the other hand, a more
accurate elastic modulus is obtained using the micromachined
cantilever test key for a shorter etching time. The SiO2 film
elastic modulus determined using the micromachined free–
free beam approach is 69.6 GPa (when the etching time is 6 h).
As a comparison, the SiO2 film elastic modulus extracted from
the micromachined cantilever test key is 67.2 GPa (when the
etching time is 1 h). Since the free–free beam is a readily
fabricated and modeled micromachined structure, it can be
employed as a supplement test key to the cantilever beam
approach.

5. Conclusions

The vibration characteristics of the micromachined free–
free beam have been discussed in this study. The resonant
frequency and mode shape of the micromachined free–free
beam influenced by suspensions and process are investigated
through simulations and experiments. In application, this
study employed the resonant frequency of the micromachined
free–free beam to successfully extract the mechanical
properties of SiO2 thin film. As a comparison, the vibration
characteristics of a micromachined cantilever have also
been studied. However, the boundary condition of a bulk
micromachined cantilever is influenced by the undercut, and
varies with the etching time.

In conclusion, this study demonstrates that the
micromachined free–free beam is a better test key to extract
the thin film elastic modulus when the wafer experiences a

356



Comments on determining the elastic modulus of a thin film using the micromachined free–free beam

relatively long etching time. Moreover, the micromachined
cantilever gives a lower bound and the micromachined free–
free beam gives an upper bound for determining the thin
film elastic modulus. Since the free–free beam is a readily
fabricated and modeled micromachined structure, it can be
employed as a supplement test key to the cantilever beam
approach.

Acknowledgments

This research is based on the work supported by National
Science Council of Taiwan under grant NSC-92-2212-E-
007-052. The authors would like to thank the Central
Regional MEMS Research Center of National Science
Council, Semiconductor Research Center of National Chiao
Tung University and National Nano Device Laboratory of NSC
for providing the fabrication facilities.

References

[1] Wu M, Lai C-F and Fang W 2004 Integration of the DRIE,
MUMPs, and bulk micromachining for superior
micro-optical systems IEEE MEMS’04 (Maastricht, The
Netherlands, Jan. 2004) pp 97–100

[2] Piekarski B, DeVoe D, Dubey M, Kaul R and Conrad J 2001
Surface micromachined piezoelectric resonant beam filters
Sensors Actuators A 91 313–20

[3] Wang K, Yu Y, Wong A-C and Nguyen C T-C 1999 VHF
free–free beam high-Q micromechanical resonators IEEE
MEMS’99 (Orlando, FL, Jan. 1999) pp 453–8

[4] Su M, Li S and Dravid V P 2003 Microcantilever
resonance-based DNA detection with nanoparticle probes
Appl. Phys. Lett. 82 3562–4

[5] Zhang L M, Uttamchandani D, Culshaw B and Dobson P 1990
Measurement of Young’s modulus and internal stress in
silicon microresonators using a resonant frequency
technique Meas. Sci. Technol. 1 1343–6

[6] Petersen K E and Guarnieri C R 1979 Young’s modulus
measurements of thin films using micromechanics J. Appl.
Phys. 50 6761–6

[7] Tsai H-C and Fang W 2003 Determining the Poisson’s ratio of
thin film materials using resonant method Sensors Actuators
A 103 377–83

[8] Kiesewetter L, Zhang J-M, Houdeau D and Steckenborn A
1992 Determination of Young’s moduli of micromechanical
thin films using the resonance method Sensors Actuators A
35 153–9

[9] Hu H-H, Lin H-Y, Fang W and Chou B C S 2001 The
diagnostic micromachined beams on (111) substrate
Sensors Actuators A 93 258–65

[10] ASTM standard, C623-92 2000 Standard test method for
Young’s modulus, shear modulus, and Poisson’s ratio for
glass and glass-ceramics by resonance, ASTM
International, West Conshohocken, PA

[11] Rao S S 1995 Mechanical Vibrations 3rd edn (Menlo Park,
CA: Addison-Wesley)

[12] Meirovitch L 1967 Analytical Methods in Vibrations (New
York: Macmillan)

357


