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Sensors
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• Transfer the mechanical behavior (such as deformation, stress, and 

acceleration) to electrical signal

• Static method : stress/strain and deformation/displacement

• Dynamic method : resonant frequency

• Sensing techniques can be characterized as static and dynamic approaches

+ stress/strain detection - piezoresistive strain gauges piezoelectric sensing

+ deformation/displacement detection - capacitance interferometer

+ resonant frequency
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Stress detection - piezoresistive strain gauge

• Piezoresistivity - a material property where the bulk resistivity, r, is 

influenced by the mechanical stresses applied to the material 

• Strain gauge - a conductor or semiconductor that is fabricated on 

or bonded directly to the surface to be measured and that changes in 

dimension along with the surface    

• The gauge resistance varies proportional with the change in gauge 

dimension by two factors,

+ deformation of the shape of the gauge 

+ piezoresistivity effect
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• The strain gauge can also be used to measure the vibration frequency of 

a structures

+ the stress status of a structure ( at a certain face) can vary from tension to 

compression during vibration, for example, a cantilever beam

• The sensitivity is expressed by the Gauge factor, GF ( eGF = dR/R )

GF = (1+ 2m) + (dr/r)/e

Poisson's ratio residual strain
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• Micromachined strain gauge has two advantages

+ Easy to define the pattern of the gauge + High GF - traditional conductor strain 

gauge the GF mainly determined by m, 

however, the GF is dominated by (dr/r) 

for a semiconductor strain gauge

p-type silicon

n-type silicon

metal 1 ~ 5

up to 200

down to -140

Material GF

E.O. Doebelin, Measurement Systems, 1990
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Stress detection - piezoelectric sensing

• Piezoelectricity - the phenomenon in which an electrical voltage develops  

due to an externally applied stress

• Silicon is not a piezoelectric material, therefore an additional piezoelectric 

film has to be deposited onto the substrate when applying this technique

• Piezoelectric materials are very sensitive sensors since a very small 

displacements will cause large detectable voltages, the reverse argument 

shows that they are poor actuator materials 

• An opposite effect is also true - the piezoelectric material will deform 

under an input voltage, therefore it can also be a material for actuator 

• ZnO is the most common piezoelectric material used in microfabrication
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Deformation detection - capacitance

• The basic parallel plate capacitor equation is 

C = eA/d

d

A

distance between two plates

overlapping plate area

dielectric constant

• There are several ways to sense the deformation by the 

changing of capacitance, for example 

c1

c2 c1 c2
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Why microsensors?

• The primary advantages of the microsensor is the reducing of its size 

+ lower weight (greater portability)

+ lower manufacturing cost (less material)

+ sensitivity

+ power consumption

Semiconductor Sensors, edited by S.M. Sze, 1994.
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• Micromachining processes - batch fabrication, and IC processes compatible 

+ lower cost (batch processes)

+ integration of the electrical and mechanical parts (less material)

+ performance (distributed sensor)

Honeywell
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Accelerometer
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• Accelerometer is applied in diverse areas, including deploying air bags, 

monitoring machinery, etc. 

• The basic components of an accelerometer are a proof mass m, a spring k, 

and a damper c

k

m

c

object

accelerometer

y

x
z = x-y

0)()(  yxkyxcxm 

ymkzzczm  

Basic concept
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• The real structure associated with the physical model 

k
m

E, I, L Air gap, c

+ K : 3EI/L3, beam stiffness

+ c: damping, comes from both 

structure and air effect

k

m
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k
m

E, I, L/2 Air gap, c

+ K : 48EI/L3, beam stiffness

+ c: damping, comes from both 

structure and air effect

k

k

m

k
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Conventional accelerometer

• Piezoelectric accelerometer

Measurement Systems 4th ed., E.O. Doebelin, 1990

Figure Courtesy: B & K Instruments, Marlboro, Mass., USA

S: spring

M: mass

P: piezo

B: base
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• Capacitive accelerometer

Measurement Systems 4th ed., E.O. Doebelin, 1990

Figure Courtesy: B & K Instruments, Marlboro, Mass., USA

Conventional accelerometer



MDL

NTHU

L.M. Roylance and J.B. Angell, IEEE Transaction on ED, 1979.

Bulk micromachined accelerometer

+ Modern product

P.W. Barth, Sensors and Actuators, 1990

+ Early product

• Piezoresistive type
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• Piezoelectric type

ZnO, piezoelectric 

material

P.-L. Chen, et al., IEEE on ED, 1982.

ZnO

+ Part of the fabrication processes
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• Capacitive type

T. Sasayama, et al., Transducers '95, 1995.

+ Part of the fabrication processes



MDL

NTHU

• Frequency type

resonator

T.V. Roszhart, et al., Transducers '95, 1995.
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Surface micromachined accelerometer

• In - plane detection

Figure source: L. O'Connor, Mechanical Engineering, 1992.

mass, mspring, k

fixed
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+ Due to the fabrication characteristic, the capacitive type sensing technique is 

more common for surface micromachined accelerometer

sensing 

element

anchor to the substrate

before accelerated

after accelerated

mass

spring

Figure source : Catalog for ADXL50 accelerometer, Analog Device Co.
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• Out - of - plane detection

spring

mass

B.E. Boser, Monolithic surface-micromachined inertial sensor, 1995.
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Pressure sensor
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• Pressure sensor can be applied to detect (1) tire and oil pressure in  

automobile, and (2) blood pressure in human body, etc. 

• Pressure sensor contains a deformable plate.  The pressure is determined by 

the deformation of the plate 

Basic concept

P0

P1

P1

P0

P1

Micromachined plate
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Conventional pressure transducer

• Elastic transducer

Measurement Systems 4th ed., E.O. Doebelin, 1990
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Bulk micromachined pressure sensor

Micromachined plate

• Piezoresistive type

Piezoresistive 

sensing element

J. Bryzek, et. al., Spectrum, 1994
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• Capacitive type

H.-L. Chau and K.D. Wise, IEEE Transactions on ED, 1988.
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Bulk/Surface micromachined pressure transducer

• Good example to show the integration of the surface and the bulk 

micromachining

• Resonant type : The stiffness of the resonator varies with the pressure -

the natural frequency of the resonator will change with the pressure

surface micromachined 

resonator

C.J. Welham, J.W. Gardner, and J. Greenwood, Transducer '95, 1995



MDL

NTHU

• Fabrication processes

C.J. Welham, J.W. Gardner, and J. Greenwood, Transducer '95, 1995.

surface micromachined 

resonator

Bulk silicon etching
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• Capacitive type

Bulk silicon etching

surface micromachined 

membrane (poly-Si)

J.T. Kung and H.-S. Lee, J. of MEMS, 1992.
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+ deformation of the plate measured through external optical system
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doped (phosphorus) 

layer) for bottom 

electrode

• Fabrication processes



MDL

NTHU

Thermal sensors
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• Thermal sensors : sensors that measure physical quantities by 

+ physical properties to thermal quantities

+ thermal quantities to electrical quantities

• In general, a thermal sensor operates in 2~3 steps

1. Non-thermal signal to a heat flow

2. Heat flow to a temperature difference

3. Temperature difference to an electrical signal

• Applications of thermal sensors

+ flow sensors (steps 1~3)

+ infrared radiation sensors (steps 2~3)
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• Better thermal isolation

• Small mass results in short response time

• Small mass results in higher sensitivity

• Distributed sensor through fabrication



MDL

NTHU

IR imager
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• Thermal flow sensors are the most common flow sensor

• The basic concept for thermal flow sensor is the cooling of a hot 

object by the flow 

Thermal Flow Sensors

Q = rAvCDT

Q = heat dissipated into the fluid

r = density of the fluid

A = cross-sectional area of the flow

v = flow velocity

C = specific heat

• Better thermal isolation

• Small mass results in short response time



MDL

NTHU

• Two most common structures for thermal flow sensors

• The basic components of the thermal flow sensor contains one heater 

and two thermal sensors

L. Qiu, E. Obermeier, and A. Schubert, Transducer '95, 1995
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• Temperature distribution near the heater and thermal sensor when flow 

velocity is 0.0 m/sec and 2.0 m/sec

v = 2.0 m/s

• The flow velocity is determined by the difference of the downstream 

and upstream temperature

L. Qiu, E. Obermeier, and A. Schubert, Transducer '95, 1995
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heater

cavity for thermal isolation

• Two typical micromachined thermal flow sensor

fluid flow

thermal 

sensor
heater

fluid flow

F. Mayer, O. paul, and H. Baltes, Transducer '95, 1995
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• Resonant bridge flow sensors

+ The resonant frequency of the resonating 

microbridge will shift 

+ The sensor contains a resonant bridge which 

is driven at a temperature elevation of 20°C

+ The bridge may be contaminated by particles 

within a real fluid - the resonant frequency 

will be shifted by this effect 

S. Bowstra, et. al., Sensors and Actuators, 1990
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Actuators
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• Actuators :  Engine of the MOEMS, Moving parts

Sandia National Lab.

Actuator 

(Engine)

Transmission

Passive 

components
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• In a more general way, "actuator" is named as an output transducer that  

initiate some action (S. Middelhoek, Silicon Sensors, 1989)

• Actuators can be characterized as out-of-plane (bulk micromachining)  

and in-plane (surface micromachining) motion

• Our discussion here will focus on the actuators to transfer the electrical  

signal to mechanical deformation

• Application of the micromachined actuators can be mechanical 

switch, scanning mirror, motors, positioner, microvalve, etc.
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Application - TI DMD 
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Classify The Motion of the Micro Actuator 

• In-plane motion

W.C. Tang, T.-C.H. Nguyen, and R.T. Howe, 1989.L-.S. Fan, Y.-C. Tai, and R. S. Muller, 1989. 

Angular Linear
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• Out-of-plane motion

Angular Linear

V. M. Bright, 1998S.-W. Chung et. al., 1996
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• Due to the fabrication characteristics, the bulk micromachined 

structures have more space to move out-of-plane

• Motion of the cantilever can be initiated through the following approaches,

+ thermal

+ piezoelectric

+ shape alloy

+ magnetoresistive

+ electrostatic
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+ Four different approaches to actuated the micromachined cantilever

Magnetic 

type

Piezoelectric 

type
Thernal (bilayer) 

type

Shape alloy 

type

E. Quandt and H. Holleck, Microsystem Technologies, 1995
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In-Plane Electrostatic Actuators
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V

-

+

-Q

+Q

x x

y

Constant area, A

• Energy 

• Electrostatic force

U = CV2/2

Fx = -dU/dx

where C = eA/x

)(
2

1
2

2

x

A
VFgap

e


Gap closing electrodes

Fg
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Comb electrodes

V

-

+

-Q

+Q

Constant 

gap, d

x

y

Fc

y

L

• Electrostatic force

U = CV2/2

Fy = -

dU/dy

where C = eyz/d

)(
2

1 2

d

z
VFcomb

e


• Energy 
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Comb-drive actuator

drive probe

sense probe

moving parts supporting frames

bond to the substrate

stationary electrode

W.C. Tang, et. al., Sensors and Actuators, 1990.
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Mass

Spring

Spring

Electrostatic force, Fc
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Comb 

electrode

Moving stage

Spring

J. Hsieh, and W. Fang, the ASME IMECE, New York, NY, 2001
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UC Berkeley
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Sandia National Lab.
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UC Berkeley
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C.-J. Kim, A.P. Pisano, and R.S. Muller, J. of MEMS, 1992.

Microgripper

• Microgripper is fabricated by both surface and bulk micromachining

microgripper

euglena

+ after standard IC packaging
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Comb 

electrode

Moving 

platform

J. Hsieh, and W. Fang, the SPIE Micromach. and Microfab., 

San Francisco, CA, 2001

Micro motor (comb)
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• The motor is driven by several stators which are at its side

statorhub

rotor

air gap

J.H. Lang, Integrated Micro-motion Systems edited by F. Harashima, 1989.

Micro motor
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SDA (Scratch Drive actuator)

SDA(scratch drive actuator)之設計

靜電式驅動 : 30~150V

單位行程 : 10nm

出力大小 : 100μN

矽基材

支撐樑

平板

突塊

絕緣層

△x

L2

L1

T.Akiyama, K. Shono

Sophia University, MEMS’93
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θ V

V

+ -

+ -

V

V

+ -

+ -
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SDA 驅動測試
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C.-Y. Wu, and W. Fang, 2002
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Out-of-Plane Electrostatic Actuators



MDL

NTHU

Mechanical switch

• Mechanical switch

+ micromachined switch proposed by Petersen at 1979 is an application of the 

electrostatic force linear actuator

K.E. Petersen, IBM J. of Research and Development, 1979.

electrode 1 

(evaporated Au-Cr)

electrode 2 (p+ doped layer)

+ the actuator - fabrication processes are shown in chap. 3
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Torsional scanning mirror 

• Torsional mirror can rotate about the torsional bar by the electrostatic force

K.E. Petersen, IBM J. of Research and Development, 1980.

After bonding

SEM photo of the 

top substrate
f

Electrode

Ridge

Torsional bar
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• Torsional actuator : out-of-plane angular motion

D. Chauvel et. al., 1997S.-W. Chung et. al., 1996

gap

+ Surface device + Bulk device

L

Design issues 
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• Electrostatic force 

2

2

0
2

1

x

V
AFel e

)( xdkFme 

V

A, e0

k

x = d

x

electrostatic force :

spring force :
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• The general problems of the existing Micro Electrostatic 
Torsional Actuator (META)

+ Limitation of the rotating angle as well as the plate size 
(for surface device)

+ The demand of the large driving voltage (for bulk device)

+ Pull-in effect

Surface device Bulk device
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Typical operating q -V curve

B -- C  Pull-in
C -- D  Hysteresis

0 5 10 15 20 25 30 35

Voltage (V)

-5

-4

-3

-2

-1

0

A
n
g
le

 q
(d

e
g
)

attracting
A

B

C

releasing

0

D

q d0
A
B

C  , D

+ Pull-in effect
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META with extending cavity

d

L

da

qa

extending cavity

V

plate

 To overcome the size limitation of META
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• conventional ~ 

gap decrease drastically

gap

• proposed ~ 

gap decrease smoothly

gap

Curved electrode

 To improve the electrostatic property of META
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Fabrication processes

 Integrating and surface process and front-side bulk etching

(d)

(e)

Define cavity and lower electrode

Pattern sacrificial layer

Pattern structural layer

Releasing structure and etching Si

(c)

(a)

 (b)

(f)

Pattern top electrode (option)
and then remove sacrificial layer

extending 
cavity

Deposit protection/isolation layer

Fabrication processes and results 
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J. Hsieh and W. Fang, Sensors and Actuators A, 2000

J. Hsieh and W. Fang, Transducers99, 1999

extending 
cavity

curved 
electrode

uncurved mirror plate
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META with extending cavity
(Al as plate material)

flat plate 
surface

large gap extending 
cavity
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(a) (b)

(c) (d)

Fabricating result upon different top electrode thickness
(a) 0 (b) 0.1mm (c) 0.19mm (d) 0.3mm
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• EDLA Engine (Electrostatically-Driven-Leverage Actuator ) :        

Out-of-plane Gap-closing Electrostatic Actuator

Output

electrode

pivot

lever 

H.-Y. Lin, H. Hu, and W. Fang, Transducers’01, Munich Germany, 2001

Gap-closing Lever Actuator
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600 mm

lever-mechanism

H.-Y. Lin and W. Fang, IEEE Optical MEMS 2000, 2000

gap-closing

electrode

stiffened mirror with 
reinforced frame
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H.-Y Lin and W. Fang, ASME IMECE 2000, 2000
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+  Laser light scanning

Before scan After scan at 17.7 KHz
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+-

V

Side view

Vertical comb
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Comb 

electrode

Comb 

electrode

J. Hsieh, C.-C. Chu, M.-L. Tsai, and W. Fang, IEEE Optical MEMS’02,  2002
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J. Hsieh, C.-C. Chu, M.-L. Tsai, and W. Fang, IEEE Optical MEMS’02,  2002
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J. A. Yeh et. al , University of Comell , 1999
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R. A. Conant et. al , UC Berkeley , 2000
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In-Plane Thermal Actuators



MDL

NTHU

•220μm長，2μm厚
• 2.94V， 3.86mA

輸出力4.4μN

• 最大變形量16μm

• 8μm at 300 Hz 

• 1.75μm at 1 KHz

Hot-cold arm thermal actuator
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• 單熱臂

• 入射光延原方向反射

• 3.5 mrad tolerance

• Au 膜

• 4.5μm  plate thickness
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• 單熱臂

• 主微致動器驅動轉子

• 副微致動器頂住驅動齒

桿

• 背向彎曲的應用

- 7.5 V, 5 sec

• 驅動電壓 3.7 V
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Out-of--Plane Thermal Actuators
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Bimorph thermal actuator

where
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Bimorph thermal actuator

W. Riethmuller and W. Benecke, IEEE Trans. on ED, 1988.

Layer 1 (Au)
Heater 

(polysilicon)

Layer 2 (p+ silicon)
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• 採單一結構層，增加元件壽命
• 具有雙向致動的能力
• 使用粗細相同的樑，可改善致

動器性能及提高製程良率

Single layer thermal actuator
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Moving upward
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Moving downward
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Applying voltage：0~7V

Beam length：240 mm
Beam width：10 mm

Static drive
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Vappl： 6.5V Vappl： 6.7V Vappl： 6.85V

• Temperature distribution   
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Dynamic drive

Applying voltage：5V

Driving freq : 0~200 Hz

Beam length：240 mm
Beam width：10 mm
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Reliability test

Vappl： 2.25V            Driving freq： 32.9kHz
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Thermal actuator

Mirror

Application - 1D scanner
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Thermal actuator

Mirror

Application - 2D scanner


