Outline

- **1** Introduction
- **2** Basic IC fabrication processes
- **3** Fabrication techniques for MEMS
- **4** Applications
- **5** Mechanics issues on MEMS

2. Basic IC fabrication processes

- 2.1 Deposition and growth
- 2.2 Photolithography
- 2.3 Etching
- 2.4 Bonding

2.3 Etching

Runyan Chap. 6, 莊達人 Chap. 8, Wolf and Tauber Chap12~14, or Vossen and Kern Part V.

• Etching: the processes to remove unwanted thin film or substrate

- Etching techniques can be characterized as
 - + Wet chemical etching
 - + Dry etching

Ion etching - ion milling and sputter etching (physical)

Plasma etching (chemical)

Reactive ion etching (RIE) (physical + chemical)

- Etching mechanisms could be different between the substrate and thin films
- For substrate
 - + Substrate single crystal material
 - + Etching rate could be crystal plane dependent

- For thin films
 - + Thin film poly-crystal or amorphous materials
 - + Etching rate is crystal plane independent

Isotropic and anisotropic

+ Isotropic

+ Anisotropic

Substrate Orientation

Crystal plane Orientation

MDL NTHU

- Etching techniques can be characterized as
 - + Wet chemical etching
 - + Dry etching

Ion etching - ion milling and sputter etching (physical)

Plasma etching (chemical)

Reactive ion etching (RIE) (physical + chemical)

Etching Mechanism

- The etching mechanism is similar to CVD, except in CVD the substrate is not involved in the chemical reaction
 - + Reactant transported from etchant solution to surface
 - + Reactant adsorbed by the substrate surface
 - + Chemical reaction on the surface
 - + Etch products desorbed from the substrate surface
 - + Transport of etch products from surface into solution

$$SiO_2 + 6HF \rightarrow H_2SiF_6 + 2H_2O$$

Etching Rate

- Since the five-step etching processes are sequential, the one with slowest rate will determine the etching rate
- The etching rate is determined by (1) chemical reaction rate, or (2) mass transportation rate
 - + Etching rate can be increased by increasing temperature if it is surface reaction rate limited
 - + Etching rate can be increased by agitation if it is mass transportation rate limited
- Ultrasonic excitation is a very common agitation source
- Etching rate is also etchant solution dependent

Single Crystal Silicon

• Thin films

• Flat edge indicate the crystal orientation of the Si substrate

Anisotropic Etch

• Shape of (100) Si substrate after anisotropic etch

B. Hok, Integrated micro-motion systems, edited by F. Harashima, 1990.

W. Fang and J.A. Wickert, DSSC annual report, 1993

• Undercut effect is exploited to make micromachined structures such as beams, suspensions, etc.

- If Si wafer is etched long enough, any arbitrary opening on the mask will result in a rectangular pit in the wafer
- The arbitrary opening is perfectly inscribed in the rectangle

• Similar effect to design the clamped-clamped beam (2 openings)

W. Fang and J.A. Wickert, DSSC annual report, 1993

Another design of the clamped-clamped beam (2 openings)

• Similar effect to design the micro suspensions (4 openings)

• Mask pattern which can not be fully undercut

W. Fang, SPIE conference, 1997

W. Fang, SPIE conference, 1997

• Other examples

10 μm

D. Moser, M. Parameswaran, and H. Baltes, Sensors and Actuators, 1990

Convex Corner Compensation

- As square block (mesa) structure is required for device, an extra pattern can be added to the convex corner to prevent undercut
- The shape of the corner compensation is determined by (1) shape of the corner, and (2) depth of the mesa

1 mm

B. Puers, and W. Sansen, Sensors and Actuators, 1990

Application of the mesa - inertia of the accelerometer

L.M. Roylance and J.B. Angell, IEEE Transaction on ED, 1979.

Common Etchant for Single Crystal Si

- KOH (anisotropic etchant)
 - + etch rate ~ 1 μ m/min on (100) substrate at 85°C
 - + selectivity is ~ 400:1 for (100):(111)
 - + selectivity is ~ 600:1 for (110):(111)
 - + selectivity is ~ 500:1 for Si (100) : SiO₂
 - + add isopropyl alcohol (IPA) for better selectivity to crystal planes
 - + etch rate decreases ~ 20x on boron doped silicon

- EDP (anisotropic etchant)
 - + etch rate ~ 1 μ m/min on (100) substrate at 115°C
 - + selectivity is ~ 35:1 for (100):(111)
 - + selectivity is ~ 5000:1 for Si (100) : SiO_2
 - + may get rougher Si surface than KOH
 - + etch rate decreases ~ 50x on boron doped Si
 - + toxic
- TMAH (anisotropic etchant)
 - + selectivity is >4000:1 for Si (100) : SiO₂ (or Si₃N₄)
 - + higher surface roughness than KOH or EDP
 - + etch rate decreases ~ 50x on boron doped Si

- N₂H₄ (anisotropic etchant)
 - + High selectivity for Si : SiO₂
 - + Low selectivity for (100) : (111) undercut at boundary
 - + May get rougher Si surface than KOH
 - + Toxic

Y.-L. Chen, J.-H. Hsieh, and W. Fang, 1997

HNA (isotropic etchant) : Hydrofluoric acid (HF)
+ Nitric acid (HNO₃) + Acetic acid (CH₃COOH)

- + Etch rate ~ 0.7 3.0 μm/min for HF : HNO₃ : CH₃COOH is 10 : 30 : 80 at 22°C
- + SiO₂ etch rate is 300 Å/min
- + Selectivity is ~ 100 : 1 for Si : SiO₂

M.J. Theunissen, et al, J. Electrochem. Soc., 1970

- Two-step etching process including : (1) the silicon is oxidized by HNO₃ first, and (2) the oxide is then dissolved by HF
- At high HF low HNO₃ concentration, etching rate is dominated by process (1)
- At high HNO₃ low HF concentration, etching rate is dominated by process (2), this region is used as polishing etch

MDL **NTHU**

isotropic etching

Dopant Dependent Etch Stop

 Doping - the process to add dopant into a silicon substrate by (1) diffusion, or (2) ion implantation

- Etch stop if Si substrate is heavily doped, etching rate for anisotropic etchants (e.g. KOH, EDP) will be reduced drastically
- The most common dopant for etch stop is boron

 Doped etch stop layer could precisely define the thickness of a beam, membrane, or plate

- If Si substrate doped with boron to about 10²⁰ atoms/cm³, the etch rate will be reduced
 - + For KOH the etch rate become 1/20 if the doped boron $\ge 1 \times 10^{20}$ atoms/cm³
 - + For EDP the etch rate become 1/50 if the doped boron $\ge 7 \times 10^{19}$ atoms/cm³

Boron concentration vs etch rate for KOH and EDP

For KOH

For EDP

H. Seidel, 4th Int. Conf. on Solid State Sensors and Actuators, 1987

• The doping process can be completed by two approaches

+ Diffusion

- + Ion implantation a technique by which impurity atoms, traveling at high energy, are made to impinge on the substrate
- Comparison of diffusion and ion implantation method
 - + In general, the thickness of doped layer is approximate 10~20 μm by diffusion method, but only several microns by ion implantation
 - + The equipment for ion implantation is very expensive
 - + Although diffusion method is less accuracy in controlling dopant concentration and thickness of doped layer, it still satisfied the requirement for MEMS

Distribution of the doped atoms

S.M. Sze, Semiconductor Devices Physics and Technology, 1985

F. Ericson and J-A. Schweitz, J. of Appl. Physics, 1990

Devices for diffusion

Devices for ion implantation

- The doped boron is replaced silicon in the crystal structure to form B-Si
- Since the boron atom is smaller than silicon, the doped layer is in tensile residual stress

For more details about the doping processes please read

Diffusion - S.M. Sze Chap7, 莊達人 Chap 9, W.R. Runyan and K.E. Bean, Chap. 8 Ion implantation - S.M. Sze Chap8, 莊達人 Chap 9, W.R. Runyan and K.E. Bean, Chap. 9

- Substrate contains two parts with different doped concentration
- Heavily doped part has higher conductivity and will be oxidized more quickly - the heavily doped Si will be etched faster than the lightly doped Si

Equipment setup

Wafer holder

Source: http://www.ammt.com/

Single Crystal Silicon

• Thin films

- In general, thin films are poly-crystal or amorphous materials
- No crystal-plane oriented anisotropic etching (wet etching)

Common Etchant for SiO₂

- HF
 - + Buffer HF add NH₄F to HF to control pH yield
 - + etching rate depends on density, residual stress, and microstructures of SiO₂
 - + toxic
 - + can not store in glass bottle

• Undercut of the thin film structure

(a)

(b)

(c)

Thin Film Processes edited by J.L. Vossen and W. Kern, 1985.

It takes longer time to pattern very thick film
Undercut effect significantly influence structure dimensions

MDL NTHU

- The undercut effect can be exploited to prevent step coverage, if additional layers are to be deposited subsequently
- The undercut effect can also be applied to smooth the edge of the structure

W. Fang, Ph.D. thesis, 1995

Common Etchant for Metal

- Au etchant (type TFA) : at 25°C etching rate 28 Å /sec
- Al etchant (type A) : at 50°Cetching rate 100 Å /sec
- Ni etchant (type TFB) : at 25°C etching rate 30 Å /sec
- Cr etchant : Cr-7

- Etching techniques can be characterized as
 - + Wet chemical etching
 - + Dry etching

Ion etching - ion milling and sputter etching (physical)

Plasma etching (chemical)

Reactive ion etching (RIE) (physical + chemical)

2.3.2 Ion Etching (Physical)

Reading : J.L. Vossen and W. Kern, 1985.

- Ion etching to remove atoms from substrate surface by bombardment with energetic ions (i.e. physical process)
- Ion etching contains two different approaches: (1) ion milling (or ion beam etching), and (2) sputter etching
- Ion milling ions are generated in a plasma remote from substrates and subsequently accelerated towards them
- Sputter etching the substrates are an integral part of the cathode of a parallel plate discharge
- Anisotropic etch (substrate orientation) and low selectivity

Sputter Etching

 Sputter etching - to etch the substrate by the bombarding of high energy ions generated by plasma

Ion Milling

 Ion milling - ions are generated in a plasma remote from substrates and subsequently accelerated towards them

Basic Steps in Ion Milling

- Electrons are emitted from the cathode filament
- Emitted electrons are accelerated toward the anode and their path length is increased by the magnetic field
- Neutral gas atoms in discharge chamber will then be impacted and ionized by accelerated electrons
- Ions created in the discharge chamber are extracted and formed into an ion beam by a set of grids
- Electric potential corresponding to the ion beam energy required for ion milling is applied across a parallel set of grids
- Accelerated ions are neutralized by a neutralization filament to prevent space charge effect

Etching Rate

- The factors determining sputtering yields, and consequently ion milling rates are
 - + Target material binding energy
 - + Beam energy momentum of the bombarding ions
 - + Impact angles
 - + Gas type mass (momentum) of the ion

• Etching rate vs Impact angle for different materials

Angle of Incidence (degree)

D.Bollinger and R. Fink, Solid State Technology, 1980.

Basic Physical Effects during Impact

- 1. The base of the groove is etched by direct impingement of ions
- 2. The wall of the groove is etched by direct impingement of ions
- 3. The etching mask is etched by direct impingement of ions
- 4. The area near the base of wall is shadowed by etching mask and step
- 5. Etching rate of the base near wall is increased by the ions reflecting from the wall
- 6. Redeposition of the material from the base of the groove onto the wall
- 7. Redeposition of the material from the wall onto the base of the groove

- Facets is due to the effect No. 3
- The angle formed on the photoresist is the angle of maximum etching rate with respect to the beam
- The thin film can be etched even when much of the resist remains
- The angle formed on the thin film is also the angle of maximum etching rate with respect to the beam
- Increase the thickness of photoresist can protect thin film

Trenching

- Trenching is formed by the effect No. 5
- Trenching can be easily eliminated by increasing the angle of incident ion beam (however, sputter etching can't)

P.G. Gloersen, J. of Vac. Sci. Tech., 1975.

Redeposition

Thin Film Processes edited by J.L. Vossen and W. Kern, 1985.

- If redeposition rate by effect No. 6 is higher than the direct etching rate by effect No.2, thin layer will be left on sidewall
- Redeposition can be adjusted by:
 - + Choosing the angle of ion beam such that the etch rate on wall slightly exceeds the redeposition rate
 - + Removing the thin film left on the sidewall by etching with a very oblique ion beam at the end of ion milling

P.G. Gloersen, J. of Vac. Sci. Tech., 1975.

Advantages Over Sputter Etching

- Independent control over ion beam parameters
- Collimated ion beam gives higher resolution
- Substrate etched outside of plasma region no high energy electron bombardment
- Lower work chamber pressure less contamination

Ion Etching (physical) vs Wet Etching (Chemical)

- Advantages of ion etching over chemical etching
 - + Less resist undercutting, no limit to pattern size
 - + Insensitive to materials any materials such as alloy or combination of material layers may be etched
 - + Dry process less contamination, no capillary force
 - + Resist defects (eg. lack of adhesion) have little effect
- Disadvantages of ion etching over chemical etching
 - + Low selectivity
 - + Expensive equipment
 - + Lower throughput
 - + Sidewall redeposition

W. Fang, Ph.D. thesis, 1995

When to Use Ion Etching

- When undercutting is not tolerable
- When chemically inert materials need to be etched (eg. gold)
- When a combination of materials need to be etched (eg alloys)
- When pattern geometry in the micron to sub-micron range

2.3.3 Plasma Etching (Chemical)

 Plasma etching - exploit plasma to generate active species (e.g. atoms, radicals) from a relatively inert molecular gas The active species will then react with the substrate to produce volatile products

Basic Steps in Plasma Etching

- Reactive species generated by plasma
- Species diffuse to the surface to be etched
- Species adsorbed by the surface
- Chemical reaction, formation of volatile by-product
- The by-product desorbed from the surface
- The desorbed by-product diffuse to the gas

Plasma Etching vs Ion Etching

Advantages

+ High selectivity (chemical)+ Higher etching rate (chemical)

Disadvantages

+ Undercut due to isotropic etch (chemical)

2.3.4 Reactive Ion Etching (RIE)

 RIE – the etching process including (1) ions reacting with substrate/film and remove atoms chemically, and (2) ions impact on substrate/film and remove atoms physically

- Two mechanisms to enhance the etching rate
 - Surface damage Relatively high energy impinging ions (> 50eV) cause lattice damage at the surface being etched
 Reaction at the damaged surface is increased
 - Surface inhibitor Lower energy ions (< 50eV) provide enough energy to desorb nonvolatile polymer layers that deposit on the surface being etched

S. Wolf and R.N. Tauber, Silicon Processing for the VLSI Era Vol. 1, 1986.

Control of Edge Profile

- The edge profile of etched wall can be controlled by the difference of etching rate in vertical and lateral directions
- Example 1

S. Wolf and R.N. Tauber, Silicon Processing for the VLSI Era Vol. 1, 1986.

Example 2 + The Si etch rate is decreased if add H₂ to the feed gas + The etch rate of the surface without ion bombardment will decrease to zero at 10% value of H₂ concentration Silicon Etch Rate Mask Mask bias = -150 volts Si Si 20 30 Percentage of H₂in CF₄ no bias Pure CF4 etch gas 10% H₂ in CF₄ Etch Gas

S. Wolf and R.N. Tauber, Silicon Processing for the VLSI Era Vol. 1, 1986.

• Variation of the edge profile with etching gas (CF₄ + Cl₂)

CF_n **Polymer** Si Si (F

Si

Si

BOSCH DRIE Process

Passivation cycle: fluorcarbon polymer covers all surfaces. (Passivation gases: C₄F₈)

Etching cycle I: polymer removed from the base of trench by ion bombardment.

Continue passivation etching cycles

SAMCO Inc.

RIE vs Plasma Etching and Ion Etching

- **RIE is anisotropic etch**
- RIE's selectivity is better than Ion Etching (chemical)

• RIE's etching rate is higher than Ion Etching (chemical)

- Etching techniques can be characterized as
 - + Wet chemical etching
 - + Dry etching

Ion etching - ion milling and sputter etching (physical)

Plasma etching (chemical)

Reactive ion etching (RIE) (physical + chemical)

2.3.5 Lift off

- Lift off : to obtain the desired pattern by removing photoresist
- Disadvantages : (1) rounded feature profile, (2) temp. limitation

Conclusions

- Etching: key process to make 3-D micromachined structures
- Etching can be characterized as (1) dry and wet etching, and (2) physical and chemical etching
- Dry etching has the following advantages
 - + thin film anisotropic etching available (physical)
 - + no stiction
 - + less contamination
- Wet etching has the following advantages
 - + higher etching rate (chemical)
 - + better selectivity (chemical)
 - + cheap equipment

